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Abstract

Based on the Holstein double-exchange model
and a highly efficient single cluster Monte Carlo
approach we study the interplay of double-
exchange and polaron effects in doped colos-
sal magneto-resistance (CMR) manganites. The
CMR transition is shown to be appreciably influ-
enced by lattice polaron formation.

Introduction

Over the last decade the magnetic and
transport properties of CMR manganites
(La1−x[Ca,Sr]xMnO3 with 0.2 . x . 0.5) have at-
tracted a considerable amount of research activ-
ity, and in particular polaronic features near the
transition from the ferromagnetic to the param-
agnetic phase remain to be an intensely stud-
ied subject. A realistic description of the ob-
served Tc and of the electrical resistivity data is
complicated by the requirement of incorporating
strong electron-phonon interactions in addition
to the magnetic double-exchange (DE) [1]. In
the present study we aim at developing realistic
effective models for the spin lattice interaction
and appropriate Monte Carlo (MC) techniques
for their simulation.
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Fig. 1: Schematic experimental phase diagram for

La1−xCaxMnO3 after [2].

Model

Our starting point is the Holstein-DE model
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where the first term describes the well known DE
interaction, characterised by the transfer ampli-
tude

ti j = cos
θi−θ j
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φi−φ j

2 + icos
θi+θ j

2 sin
φi−φ j

2 (2)

which depends on the classical spin variables
{θi,φi}. The second term accounts for a local
coupling (∝ εp) of doped carriers to a disper-
sionless optical phonon mode with frequency ω0,
and the last term refers to the dynamics of the
harmonic lattice.

From (1) an effective polaron model may be
derived by the modified variational Lang-Firsov
transformation [3] Hp = eSHe−S = H0 +H1, where

H1 = − ∑
〈i, j〉

ti jΦi jc
†
i c j , (3)

Φi j = exp{−γ
√

ε/ω0(b
†
i −bi−b†

j +b j) , (4)

and γ is a variational parameter which measures
the importance of the polaron effect (0 ≤ γ ≤ 1).
Averaging Φi j over the phonon vacuum we ob-
tain the polaronic band narrowing factor

〈Φi j〉0 = exp{−S0 coth
[β ω0

2

]

} (5)

with S0 = γ2εp/ω0.

Numerical technique

As a first step let us neglect the coupling to
the phonons and focus on the numerical so-
lution of the DE part, which is characterised

by non-interacting fermions coupled to classi-
cal spin degrees of freedom. In a MC simu-
lation of such types of models the calculation
of the fermionic energy contribution, which de-
pends on the classical degrees of freedom, is
usually the most time consuming part, and an
efficient MC algorithm should therefore evalu-
ate the fermionic trace as fast and as seldom as
possible. The first requirement can be matched
by using Chebyshev expansion and kernel poly-
nomial methods [4], but so far this approach was
combined only with standard Metropolis single-
spin updates [5]. For the second requirement
a hybrid MC involving classical time evolution of
an effective spin model and an approximate di-
agonalisation of the fermionic problem was sug-
gested [6]. However, both approaches have a
few drawbacks, the first suffers from the frequent
evaluation of the fermionic trace, the latter is
rather complicated since it involves a molecu-
lar dynamics type simulation of the classical de-
grees of freedom.

Kernel Polynomial Method

Idea: Avoid full diagonalisation of the fermionic
Hamiltonian (time ∼ N3) by using Chebyshev
expansion together with KPM (time ∼ N2 or
less) [4]!

The energy of the system then reads

E{Si} =
∫

ρ{Si}(ε)/(eβ (ε−µ) +1)dε , (6)

and ρ{Si}(ε) is approximated by

ρ{Si}(ε) ≈
g0µ0 +2

M−1
∑

m=1
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π
√
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,

Tm(x) = cos(m acos(x)) ,

µm =
1
N

Tr{Tm[(H{Si}−b)/a]} ,

(7)

where gm account for the Jackson kernel and a,
b for scaling of the spectrum to the domain of
the polynomials Tm, [−1,1]. The expansion coef-
ficients µm are obtained by iteratively evaluating
the above trace.

New Cluster Monte Carlo approach

Idea: Combine KPM with Cluster Monte
Carlo [7,8]!

In general, the MC transition probability from
state a to state b can be separated into the prob-
abilities of considering, A(a → b), and of accept-
ing, P̃(a → b), the move a → b,

P(a → b) = A(a → b)P̃(a → b) . (8)

Given the Boltzmann weights W (a) and W (b),
detailed balance requires

W (a)P(a → b) = W (b)P(b → a) , (9)

or equivalently

P̃(a → b) = min

(

1,
W (b)A(b → a)

W (a)A(a → b)

)

. (10)

Within CMC we choose an algorithm, such that
the a priori probabilities A(a → b) and A(b → a)
“soak up” most of the difference in the weights
W (a) and W (b), and the acceptance probability
P̃(a → b) remains reasonably large.

Strategy:

1. Update all spins with classical, rejection free
CMC [9] for the effective Hamiltonian

Heff = −Jeff ∑
〈kl〉

√

1+~Sk ·~Sl , (11)

derived from the full double-exchange model
by averaging over fermionic degrees of free-
dom. Jeff is chosen randomly with 〈Jeff〉 =
x(1− x)/

√
2.

2. Calculate new energy E{Si} with KPM and ac-
cept move according to Eq. (10).

3. Continue with step 1 until sufficient data col-
lected.
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Fig.2: Magnetisation of the double-exchange model

based on CMC, hybrid MC [6], and the effective

model (11).

The data obtained with the new approach re-
produces previous Hybrid MC results [6] and
shows that interestingly the effective model (11)
is a very good approximation to the full double-
exchange model.

Magnetisation data

Encouraged by the above findings we can now
rely entirely on the effective spin model Heff and
include lattice polaron effects on the variational
level outlined above. From (1), (3), (5) and (11)
we obtain an effective polaronic DE model:

Hp = −Jeff 〈Φi j〉0 ∑
〈i j〉

√

1+~Si ·~S j (12)

+ Nω0

eβ ω0−1
+Nεpx

[

(1− γ)2(1− x)−1
]

.

The above model is treated by single cluster MC,
where the optimal γ is adjusted after each cluster
flip. Note that the spin-lattice part of (12) is sym-
metric with respect to x = 0.5, i.e., to explain the
asymmetry of the manganite phase diagram ad-
ditional Jahn-Teller type lattice interactions need
to be included. The left panel of Fig. 3 shows
the magnetisation for a few typical parameter
sets. The polaronic reduction of the magneti-
sation with increasing εp increases with temper-
ature, which is ascribed to the decrease of the
effective spin coupling proportional to 〈Φi j〉0 and
to the increase of γ (cf. Fig. 4, left panel) with
increasing temperature. As a result the electron-
phonon interaction reduces the critical temper-
ature, and for small phonon frequencies (adia-
batic case) the ferromagnetic phase may cease
to exist completely.
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Fig.3: Magnetisation & critical temperature of the effective

double-exchange Holstein model.

Conductivity

The small-polaron dc hopping conductivity can
be calculated along the lines of Ref. [10]. Start-
ing point is the Kubo formula

Reσ νν(ω) =
tanh(βω/2)

2Ωω

∫ ∞

−∞
dteiωt〈[Jν,Jν(t)]+〉

(13)
with the polaron current operator

~J = ie ∑
〈i, j〉

(~Ri−~R j) ti j Φi j c
†
i c j . (14)

In the current correlator of (13),

〈JνJν(t)〉= e2 ∑
〈i, j〉

(Rν
i −Rν

j )
2〈t2

i j〉〈c†
i c jc

†
j(t)ci(t)〉 (15)

×{(〈Φi jΦ ji(t)〉0−〈Φi j〉0〈Φ ji〉0)+ 〈Φi j〉0〈Φ ji〉0} ,

we have replaced t2
i j by its average over the clas-

sical spin variables 〈t2
i j〉 and separated the po-

laron hopping conductivity σh (∝ red terms) and
the polaron band conductivity σb (∝ blue term).
σh(ω) is related to transitions with multiphonon
absorptions and emissions, whereas σb(ω) is
due to transitions without change of phonon oc-
cupation numbers.

Evaluating the dynamic phonon correlator

〈Φi jΦ ji(t)〉0 = 〈Φi j〉2e2S0 sinh−1
[β ω0

2

]

cosω0

[

t−iβ
2

]

(16)
the dc hopping conductivity is obtained for

T > T0 = ω0{2ln[2S0 +(1+4S2
0)

1/2]}−1 (17)

as

σh = σ0 〈t2〉x(1− x)β τ e−2S0 tanh
[β ω0

4

]

, (18)

where τ = (1/2ω0)[sinh(βω0/2)/S0]
1/2,

and σ0 = za2√πe2N/Ω.

The temperature dependence of the related re-
sistivity is shown in Fig. 4 (right panel). We ob-
serve an abrupt increase of ρ/ρmax in the vicinity
of the CMR transition.
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Fig.4: Polaron variational parameter γ (left panel) and re-

sistivity (right panel) versus temperature.

Outlook

Potential future extensions of the present work
could include Jahn-Teller modes [11]. In addi-
tion, the formation of magnetic polarons in the
DE model should be accessible within the pro-
posed CMC approach.
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