De-excitation of metastable nitrogen molecules on surfaces

- quantum kinetic modelling -

1 Motivation

> secondary electrons emitted from plasma bound-
aries are generally very important for the operation
of a gas discharge

— dielectric barrier discharges for instance: exper-
imental evidence that stability of the diffusive
mode 1s controlled by seed electrons at the elec-
trodes [1]

> up to now not clear how secondary electrons are
made available on the microscopic scale

—one possibility: de-excitation of metastables at
the boundary with subsequent release of surface
electrons (see Fig. 1)
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Fig. 1: Electron release through de-excitation of a

metastable nitrogen molecule tmpacting on a surface.

> metastable de-excitation process can take place in
several possible ways:

— Penning de-excitation

— Penning exchange-process

— direct (resonant) charge transfer

> released electron can emerge from bulk or surface
state

> total number of released electrons per impacting
metastable particle: secondary electron emission
coefficient e

> alm of our investigations: quantum-kinetic simu-
lation of the de-excitation of metastable nitrogen
molecules on a dielectric surface (preferably AloO3)
and calculation of v,

2 Model

> we need experimental & theoretical data to com-
pare our results with, so that we can
—validate our approach

— benchmark our calculations and the approxima-
tions that may be necessary

— ensure that our description is detailed enough for

the plasma context

> problem: data available only for /N5 de-excitation
on Al ([2]) but not on AlyO3

> therefore we consider Al / N5 system as a starting
point

> dominant metastable state: N2<3Z;L_ )

> initial step: investigate Penning de-excitation pro-
cess (see Fig. 2)

> time-dependent non-equilibrium process

> hypothesis: process driven by Coulomb interaction
between an electron on the molecule and an elec-
tron in the solid

> approximations:
—ideal planar Al surface extending over the half
space z < 0

— metastable molecule:

* two-level system consisting of ground state (’07)
& excited state (’17)
x only one single active electron

« motion of the molecule’s center R(¢) separated
from the dynamics of the system and supplied
externally (trajectory approximation [3])

—only one single active electron in the solid
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Fig. 2: Schematic of the Penning de-excitation pro-

cess (solid lines) in an Al / Ny system showing the
electronic structure and the qualitative behaviour of the
wave functions. The Penning exchange process is in-

dicated using dashed lines.

> model Hamiltonian:

H = Hy+ Hi(t) (1)
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k ... metal electron states
g ...free electron states
m.

.. molecular magnetic quantum number

> molecule motion contained in Hy(t)

> Penning matrix element:

Vi) = / a7 / a7 03, (7 - A1)
U(AVe (7= 7)) U (7) Oy, (7 = F1))
(4)

> to calculate V*"'(¢) we need wave functions:

—electron on molecule: linear combination of
atomic orbitals (LCAO) using hydrogen-like
wave functions = ground state 2m, & excited
state 2mg

Vo (F) = Worm(F) = Uoy (F)+ 05, (7)  (5)
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r, z ... cylindrical coordinates, k =32
ap

Ngﬁu ... Normalization constants

/g

0 ... interatomic distance

—electron in surface: model solid as a potential
well with square confining potential step & use
box normalization (see also Fig. 2)
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—emitted electron: plane waves (see also Fig. 2)
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3 Quantum kinetics

> problem dealt with is an intrinsic non-equilibrium
Process

U () = e'd" (11)

> we alm to perform a quantum-kinetic simulation of
this process

> method of choice: Keldysh Green’s function tech-
nique
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> generalization of ordinary Green’s function tech-
nique using a time contour in the complex plane

> first step: consider evolution of excited state
> equation of motion (Dyson equation) for retarded

Green’s function (compact notation):
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> calculate self energy ZlRm in second order pertur-

bation theory (see Fig. 3) = central function:

Aip(ty, ) =) %ﬁg*(ﬁ)vﬁ?(tz) nz(to)
kg (13)
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Fig. 3: Second order self energies for an electron in
the excited molecule state and the free electron state

(note the dressed Green’s function Gi,).

> Eq. (12) solvable iteratively
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~+ occupation number of excited state:
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> now consider total number of emitted electrons

= S(t) =
ve=lim > ng(t)= lm )
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> Keldysh component of Green’s function Fi(t, th:
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> Keldysh component of self energy €2z (¢, th:
050, = S VROV
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> use full (dressed’) Green’s function G to incor-
porate lifetime effects of the excited state
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> can be solved iteratively to give

t t
— [dty [dty AL (t1,t2)

Gt t) =GOt Te o i
g A
4 — [dt} [dth Af(2h,t5)
X [1 — /dtl /dtg Alm(tla to) Tye 2 ™2 ]
to

(20)

> total occupation number of free electron states
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> for a time-local self energy Aq,,(t1,t9) ~ 6(t] —19)
this reduces to results published by Makoshi [4]
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complex plasmas

> Eq. (21) too complex to be calculated numerically
1in considerable time =- physically motivated ap-
proximations necessary

4 Matrix element

> can be calculated numerically from Eq. (4)

> to make final result (Eq. (21)) tractable numeri-

cally, it would be desirable to separate k & ¢ de-
pendent terms from the matrix element calculation

> only possible through approximations

— long-wavelength approximation:

* assume €z small = Az big

+ Uz can be taken at the molecule’s center R(t)
and moved in front of the integral

— metal wave function decreases exponentially out-
side the solid on a scale large compared to the

molecule’s bond length (see Eq. (10) and Fig. 2)
= expand V¥ 7 around molecule’s center

> in addition: variable transform: 7 — 7+ R =
time-dependence shifted to k£ & ¢ dependent terms

> final structure:

Vo (t) = Vi) Vg ()Vim (22)
Vilt) = —rp W (B(t)) (23)
Vy(t) = UE(R(t)) (24)

1 — exact
1 — g approximation
| — g & k approximation
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1 — exact

1 —— q approximation

1 — q & k approximation
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Fig. 4: Real and imaginary part of the matriz ele-
ment in arbitrary units (exact and with approxrima-
tions) for a mormal incidence molecule trajectory at
E = 3k

servation assumed), m = 1. Apparently the applied

— kmin) €2, ¢ = |7| €. (explicit energy con-

approximations are good for larger times and distances
from the surface (t > 1;10_9@ / z > 4ap).

5 Outlook

> finish calculation with approximated matrix ele-
ment & compare results with |2]

> repeat calculation for dielectric surface

> dielectric has different energy scheme compared to
Fig. 2 = different processes possible (e.g. direct
charge transfer = temporary negative ions)

> we need to adjust our approximations for a dielec-
tric surface
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