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Abstract� Introduced by Zener [1] the notion of double
exchange (DE) attracted renewed attention in
connection with the colossal magnetoresistive
(CMR) effect [2] in mixed-valence manganites
(e.g. La ����� Ca � MnO � ).� Large Coulomb and Hund’s rule interaction of
manganese � shell electrons, which split into�
	 and ��� 	 subbands due to octahedral sym-
metry, yields a hopping amplitude of the itin-
erant � 	 electrons, that depends on the back-
ground of local spins 
�������� formed by the��� 	 electrons [3].� We consider different possibilities for an ap-
proximate treatment of the lattice DE Hamil-
tonian in terms of effective electronic models,
which are used in a more elaborate modelling
of CMR materials (see our related poster and
Ref. [4]).� Since quantum double exchange on a lattice
is most suitably described with the help of
Schwinger bosons [5], we review its derivation
in terms of Schwinger bosons, consider the
semiclassical limit ( 
���� ), and, by means of
numerical experiments, illustrate how this limit
evolves from the quantum case.

Schwinger bosons & double exchange

As a starting point we take the Kondo lattice
model including on-site Coulomb repulsion,� ����� �!#"%$'&)( *,+.-"/( + $'(10 H.c.2 (1)
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Here summation is over nearest neighbour bonds
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sites
"
, respectively, and J�K LDMN O denote electrons in a single

band, interacting with localized spins P N via Hund’s cou-
pling Q.R . For clarity and since it can be included easily in

the final result, the orbital degeneracy of the S�T electrons
is neglected.

In the manganites we have ?VU 3 5XW � (cf.
Refs. [3, 6]). Hence, we first take the limit? ��� , resulting in� �Y�1� �!D"H$I&,( *[Z+ -"/( Z+ $'( 0 H.c. 2\�]375 �",(^(�8 9;: ",< (^( 8 = Z+ -"/( Z+ ",(�8
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with restricted fermions
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Next, the exchange term is solved and hopping
is considered as a small perturbation [7]. Intro-
ducing operators, which project locally onto the
high-spin state,
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the DE-Hamiltonian is given by (Eq. (2.3),
Ref. [7])�hgjik`l �B�1�m�!D"H$I&)(^(�8 * Z+ -"/( 9)acb" anb$ = (^(�8 Z+ $.(�8 0 H.c. 2 F

(4)
This expression can be simplified noticeable
with the help of Schwinger bosons o " and p " , al-
lowing to describe spins of arbitrary length,
 b" �qo -" p " f 
 �" �rp -" o " f (5)
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The projection operators a b" admit of a decom-
position,
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which leads to
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with the projector
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This projector annihilates the electron and trans-
formes the coupled high-spin state into its corre-
sponding Schwinger boson representation, i.e.,
the electronic spin is absorbed into the boson
description.

Hence, it is permitted to replace ~ b" by spinless
fermions

+ " , yielding the DE-Hamiltonian in its
most compact form,
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with the constrainto -" o "�0 p -" p " ����
 0 +.-" + " F (12)

In the case of low doping usually it is more ap-
propriate and natural to consider holes instead
of electrons. Using restricted hole operators

Z� "/( ,
Eq. (9) is given by
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with modified projectors,
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and �
���
 0 _ ��� as a shortcut.

The Hamiltonian for spinless fermions, Eq. (11),
changes only little,
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Note, that on a lattice it is not possible to express this
Hamiltonian in terms of permutation and spin operators,
e.g. in the form [8]5x� ���I� � N ����� N ��� ����B�`� � �,��� K �� �'¡#¢¤£ M¤¥§¦ (17)

where � N � is a permutaion of neighbouring spin states and� ��'¨¤©[©}© ª a polynomial of order �¬«­ �®� .
Effective transport Hamiltonian

To obtain an effective Hamiltonian for the spin-
dependent hole-hopping, the spin part of the
DE interaction is considered within mean field
approximation. However, there are two repre-
sentations of the DE Hamiltonian to start from:
Eqs. (13) and (15). The resulting effective Hamil-
tonians describe carriers with or without spin, re-
spectively.

Given Eq. (13), a mean hopping of the spin-
��

carriers is obtained averaging
� g�i�
� l k over free

spins �
 in a homogeneous field ¯u�±°j²�³�´ � sk;µ .
Using Eqs. (5)-(6) together with ¶`
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In a highly polarized background ( ¯Y� � ) the
spin-up band can be neglected, whereas in gen-
eral, the situation is complicated by the fact that
Eq. (18) involves restricted fermion operators
(Hubbard operators).

Alternatively, an effective Hamiltonian involving
spinless carriers is obtained from Eq. (15) by
considering a single bond ¶)È¤ÉÊ¸ within the order-
ing field ¯ , cf. Ref. [7].

Application of
- -

to a coupled state of

total bond spin 
�Ë yields the matrix element [3]o -$ o " 0 p -$ p "���
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Averaged over all values of 
 Ë and 
 sË the cor-
responding effective Hamiltonian reads
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Below we compare the classical limit of both, this
Hamiltonian and the exact expression.

Classical limit of the DE model

The limit 
Â�X� of
� gjik}l , Eq. (11), is easily de-

rived by taking its expectation value with spin co-
herent states [10],v Þ 9 
 fàß\f á = ¸â� 9,ã o

- 0�ä p - = � ­å 9 �e
 = æ v º�¸ f (24)

where ã �èç éIê 9 ß ��� = e "/ë7ì � and ä ��ê�í%î 9 ß ��� = e � "/ë^ì � .Using the properties of coherent states,o v Þ 9 
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for a given spin configuration ð ß�ñ�f áÌñ7ò and two
electronic states

v ó �[¸ and
v ó �Ä¸ ,v ó $ ¸���ô ñ

v A $ ¦ ñ ¸ v Þ 9 
 0xõ �¤ö ÷� f ßIñ�f áÌñ = ¸ (27)

(where
v A $ ¦ ñ ¸h� 9 +.-ñ = õ �¤ö ÷ v º�¸ with numbers A $ ¦ ñBøð�º f _ ò ), we find the average!#ù ¡}ú 51û.üý%þ ú ù £ & �|ÿ ÷ ! õ ¡ ö ÷ ú � � � � N ����� � N � J LN J � b H.c. � ¥ ÿ ÷ ú õ £ ö ÷ &

(28)

with the matrix element
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Hence, the classical Hamiltonian should read�hgjiÖ l 	�
�
 � � � !D"H$I& * � "H$ + -" + $ 0 H.c. 2 f (30)

which is equivalent to the results obtained in
Refs. [9, 8].

Numerical experiments

To check the quality of the semiclassical ap-
proximation we compare the (canonical) density
of states (DOS) for a fixed number of carriers
on a small cluster, which interact with quantum
(Eq. (11)) or classical (Eq. (30)) spins, respec-
tively.
 Using Chebychev expansion and maximum entropy

methods [11], for the quantum case the spectra can
be obtained numerically for rather large

­
. The classi-

cal DOS is found by averaging the eigenvalues of 5 û.ü�%þ ����� ,
Eq. (30), over a large number of spin configurations.
 For two electrons on a ring of 4 sites good convergence
is found for a moderate spin length

­ � ��� .
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Here the black dot-dashed line denotes the running
average over the discrete spectrum (thin dashed),
whereas the classical limit is given in red.


 For 4 electrons and 8 sites the spectra look very similar
already for

­ � � ì � , which is realized in manganites.
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 Note, that in both figures we subtracted the peak at� � � consuming a large fraction of spectral weight.

Another interesting check concerns the semi-
classical limit of the effective model, Eq. (22).
 The grand-canonical DOS of the tight-binding model,

Eq. (30), is calculated for a simple cubic cluster of �����
sites, using the above methods.
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 Comparing the resulting bandwidth with the limit­����
of �� K  �M � Ñ �� Ò «­ÙÓ.Ô � ,Ñ ���!#" Ò Ó.Ô � ���$ � b Ö ��×/� ¨ Ó ª&% Ö ��×/� ¨ Ó ª � �Ó('*) ¦ (31)

rather satisfactory agreement is found.

Conclusions� We review the subject of double exchange us-
ing Schwinger bosons and derive an effective
Hamiltonian for the spin-dependent hopping
of holes in an averaged background of local
spins.� In a related work these results are used within
a two-phase scenario for the description of
colossal magnetoresistant manganites.
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