Considerations on the quantum double-exchange Hamiltonian
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Abstract

e Introduced by Zener [1] the notion of double
exchange (DE) attracted renewed attention in
connection with the colossal magnetoresistive
(CMR) effect [2] iIn mixed-valence manganites
(e.g. La;_,.Ca,;Mn0O3).

e Large Coulomb and Hund'’s rule interaction of
manganese d shell electrons, which split into
eq and ¢y, subbands due to octahedral sym-
metry, yields a hopping amplitude of the itin-
erant e, electrons, that depends on the back-
ground of local spins S = 3/2 formed by the
to, electrons [3].

e \We consider different possibilities for an ap-
proximate treatment of the lattice DE Hamil-
tonian in terms of effective electronic models,
which are used in a more elaborate modelling
of CMR materials (see our related poster and
Ref. [4]).

e Since quantum double exchange on a lattice
IS most suitably described with the help of
Schwinger bosons [5], we review its derivation
In terms of Schwinger bosons, consider the
semiclassical limit (S — o), and, by means of
numerical experiments, illustrate how this limit
evolves from the quantum case.

Schwinger bosons & double exchange

As a starting point we take the Kondo lattice
model including on-site Coulomb repulsion,
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Here summation is over nearest neighbour bonds (ij) or
sites ¢, respectively, and c( ) denote electrons in a single
band, interacting with localized spins S; via Hund’s cou-
pling Jy. For clarity and since it can be included easily in
the final result, the orbital degeneracy of the e, electrons
IS neglected.

In the manganites we have U > Jg > t (cf.
Refs. [3, 6]). Hence, we first take the limit
U — oo, resulting in
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with restricted fermions ¢;, = ¢;o(1 —n; ).

Next, the exchange term is solved and hopping
IS considered as a small perturbation [7]. Intro-
ducing operators, which project locally onto the
high-spin state,
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the DE-Hamiltonian is given by (Eq. (2.3),
Ref. [7])
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This expression can be simplified noticeable
with the help of Schwinger bosons a; and b;, al-
lowing to describe spins of arbitrary length,
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The projection operators PZ.+ admit of a decom-
position,
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which leads to
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with the projector
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This projector annihilates the electron and trans-
formes the coupled high-spin state into its corre-
sponding Schwinger boson representation, I.e.,
the electronic spin is absorbed into the boson
description.

Hence, it Is permitted to replace Rj by spinless
fermions c;, yielding the DE-Hamiltonian in its
most compact form,
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with the constraint
a;-rai + b;-rbz- =25+ c;-[cz- ; (12)

In the case of low doping usually it is more ap-
propriate and natural to consider holes instead
of electrons. Using restricted hole operators h,,,
Eq. (9) is given by
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and S = S + 1/2 as a shortcut.

The Hamiltonian for spinless fermions, Eq. (11),
changes only little,
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with the constraint

Note, that on a lattice it is not possible to express this
Hamiltonian in terms of permutation and spin operators,
e.g. in the form [8]
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where P;; Is a permutalon of neighbouring spin states and
Qs(...) a polynomial of order 25 — 1.

Effective transport Hamiltonian

To obtain an effective Hamiltonian for the spin-
dependent hole-hopping, the spin part of the
DE interaction is considered within mean field
approximation. However, there are two repre-
sentations of the DE Hamiltonian to start from:
Eqgs. (13) and . The resulting effective Hamil-
tonians describe carriers with or without spin, re-
spectively.

Given Eg. (13), a mean hopping of the spin-%
carriers is obtained averaging H,): over free
spins S in a homogeneous field A = BgupH.
Using Egs. (5)-(6) together with (S*) = 0 and
(S%) = SBg[SA] (with the Brillouin function
Bg|z]), we find
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In a highly polarized background (A — o0) the
spin-up band can be neglected, whereas in gen-
eral, the situation is complicated by the fact that
Eqg. (18) involves restricted fermion operators
(Hubbard operators).

Alternatively, an effective Hamiltonian involving
spinless carriers is obtained from Eqg. by
considering a single bond (:5) within the order-
Ing field A\, cf. Ref. [7].

total bond spin St yields the matrix element [3]
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Averaged over all values of Sy and S7 the cor-
responding effective Hamiltonian reads
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Below we compare the classical limit of both, this
Hamiltonian and the exact expression.

Classical limit of the DE model

The limit S — oo of HYY, Eq. (11), is easily de-
rived by taking its expectation value with spin co-
herent states [10],
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Using the properties of coherent states,
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for a given spin configuration {6, ¢;} and two
electronic states |¢1) and |i9),
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(where [n; ) = (c;g)”j’km) with numbers n; ;. €
{0,11), we find the average
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Hence, the classical Hamiltonian should read
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(])
which is equivalent to the results obtained In
Refs. [9, 8].

Numerical experiments

To check the quality of the semiclassical ap-
proximation we compare the (canonical) density
of states (DOS) for a fixed number of carriers
on a small cluster, which interact with quantum
(Eq. (11)) or classical (Eg. (30)) spins, respec-
tively.

e Using Chebychev expansion and maximum entropy
methods [11], for the quantum case the spectra can
be obtained numerically for rather large S. The classi-
cal DOS is found by averaging the eigenvalues of H2E |
Eg. (30), over a large number of spin configurations.

e For two electrons on aring of 4 sites good convergence

Is found for a moderate spin Iength S =
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Here the black dot-dashed line denotes the running
average over the discrete spectrum (thin dashed),
whereas the classical limit is given in red.

e For 4 electrons and 8 sites the spectra look very similar
already for S = 3/2, which is realized in manganites.
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e Note, that in both figures we subtracted the peak at
E = 0 consuming a large fraction of spectral weight.

Another interesting check concerns the semi-
classical limit of the effective model, Eq. (22).

e The grand-canonical DOS of the tight-binding model,
Eq. (30), is calculated for a simple cubic cluster of 643

sites, using the above methods.
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e Comparing the resulting bandwidth with the limit
S — oo of tP) = 45[SA] ¢,
1
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rather satisfactory agreement is found.

Conclusions

¢ \We review the subject of double exchange us-
Ing Schwinger bosons and derive an effective
Hamiltonian for the spin-dependent hopping
of holes in an averaged background of local
spins.

¢ In a related work these results are used within
a two-phase scenario for the description of
colossal magnetoresistant manganites.
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