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Chiral charge order in 1T -TiSe2: Importance of lattice degrees of freedom
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We address the question of the origin of the recently discovered chiral property of the charge-density-wave
phase in 1T -TiSe2, which so far lacks a microscopic understanding. We argue that the lattice degrees of freedom
seem to be crucial for this novel phenomenon. We motivate a theoretical model that takes into account one
valence and three conduction bands, a strongly screened Coulomb interaction between the electrons, as well
as the coupling of the electrons to a transverse optical phonon mode. The Falicov-Kimball model extended in
this way possesses a charge-density-wave state at low temperatures, which is accompanied by a periodic lattice
distortion. The charge ordering is driven by a lattice deformation and electron-hole pairing (excitonic) instability
in combination. We show that both electron-phonon interaction and phonon-phonon interaction must be taken into
account at least up to quartic order in the lattice displacement to achieve a stable chiral charge order. The chiral
property is exhibited in the ionic displacements. Furthermore, we provide the ground-state phase diagram of the
model and give an estimate of the electron-electron and electron-phonon interaction constants for 1T -TiSe2.
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I. MOTIVATION

Charge-density-waves (CDWs) brought about by electron-
phonon1 or electron-electron2 interactions are broken-
symmetry ground states, typically of low-dimensional (D)
solids with anisotropic properties.3 A prominent material
exhibiting such a periodic real-space modulation of its charge
density is the transition-metal dichalcogenide 1T -TiSe2. This
quasi-2D system undergoes a structural phase transition at
about 200 K, at which a commensurate 2 × 2 × 2 superstruc-
ture accompanied by a CDW develops.4 Thereby the CDW
features three coexisting components and, for this reason, is
denoted as triple CDW. Although the charge-ordered phase in
1T -TiSe2 has been a matter of intensive research for more than
three decades, the driving force behind the phase transition has
not been identified conclusively.

Recent experiments on 1T -TiSe2, pointing to a very unusual
chiral property of the CDW, have reinforced the interest in
this problem.5,6 An object exhibits chirality if it cannot be
mapped on its mirror image solely by rotations and transla-
tions. For a CDW phase characterized by a scalar quantity
such chirality has not been detected before. The scanning
tunneling microscopy measurements performed by Ishioka
and co-workers, however, show that the amplitude of the
tunneling current modulates differently along the CDW unit
vectors in 1T -TiSe2.5 Since the tunneling-current amplitude
directly measures the local electron density, the charge density
modulates differently along the three unit vectors. As a result
the material in its low-temperature phase will not exhibit
a threefold symmetry as suggested by the triangular lattice
structure. The Fourier transformation of the scanning tunneling
microscopy data demonstrates a triple CDW as well as a
different charge modulation along each CDW component
with the respective ordering vector Qα , α = 1,2,3.5 If one
orders the triple-CDW components according to their charge
modulation amplitude in ascending order, in a sense a direction
is singled out and the triple CDW exhibits chirality because the

mirror symmetry is broken, in contrast to usual CDWs;6 see
the schematic representation by Fig. 1. Note that clockwise
and anticlockwise chiral CDWs were found in the same
sample, suggesting that these states are degenerate. This
twofold symmetry is corroborated by optical polarimetry
measurements.5 Ishioka and co-workers furthermore noticed
that the experimental data can be reproduced by a charge
density modulation of the form

ni(Qα) = A cos(QαRi + θα), (1)

where A is the modulation amplitude and θα are initial phases.5

For a chiral CDW to exist the phases of the CDW components
must differ, i.e., θ1 �= θ2 �= θ3.

From a theoretical point of view the chiral CDW in
1T -TiSe2 was addressed by a Landau-Ginzburg approach.7,8

Thereby the relative phases of the CDW order parameters
were obtained by minimizing the free energy functional. Two
CDW transitions were found with decreasing temperature:
First, a standard (nonchiral) CDW appears, and subsequently
a chiral CDW emerges, i.e., Tnonchiral CDW > Tchiral CDW. Within
the CDW phase three distinct orbital sectors are occupied,
leading to an orbital-ordered state and three interacting lattice
displacement waves (with different polarizations).

An open issue is the microscopic mechanism driving the
CDW transition. Basically two scenarios have been discussed
in the literature, where the charge order results from purely
electronic, respectively electron-lattice, correlations. Angle-
resolved photoemission spectroscopy data reveal a relatively
large transfer of spectral weight from the original bands to
the back-folded bands (due to the CDW transition), compared
with the small ionic displacement. This suggests an electronic
mechanism within the excitonic insulator (EI) scenario.9,10 A
corresponding tight-binding calculation estimates the ampli-
tude of the lattice deformation caused by an EI instability
to be of the same order as the measured one.11 The gradual
suppression of the CDW phase by changing solely electronic
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(a) nonchiral (b) clockwise (c) anticlockwise

FIG. 1. (Color online) Electron-density pattern for a triangular
lattice in case of (a) a nonchiral CDW or (b, c) chiral CDWs. Filled
circles picture the value of the charge densities, where equal colors
mark equal densities. For the nonchiral CDW shown in (a) the density
modulation along the ordering vectors Q1, Q2, and Q3 is equal.
Reflection along an ordering vector yields the same density pattern,
i.e., mirror symmetry exists. The situation changes for a chiral CDW.
A clockwise CDW (red arrow) is illustrated in (b). Now reflexion
along Q1 yields the situation depicted in (c). Obviously the pattern
(c) describes an anticlockwise CDW: that is, for a chiral CDW mirror
symmetry is broken.

properties by intercalation with S or Te further corroborates the
EI concept.12 Most convincingly, time-resolved photoemission
spectroscopy reveals an extremely fast response of the CDW to
external light pulses, which favors an electronic mechanism.13

Alternatively, the coupling to the lattice degrees of freedom
may drive the CDW transition, e.g., by a cooperative Jahn-
Teller effect.14,15 Here the particular form of the phonon
dispersion and the softening of transverse optical phonon
modes were elaborated within a tight-binding approach and
found to agree with the experimental results.16–19 The same
holds for an ab initio approach20 to a Jahn-Teller effect.
Likewise the onset of superconductivity by applying pressure
may be understood within a phonon-driven CDW scenario.21

Since some properties of the CDW in 1T -TiSe2 can be
understood by the excitonic condensation of electron-hole
pairs and others by the instability of a phonon mode, a
combined scenario has been proposed.22

As yet it is unclear whether the chiral property of the CDW
favors the electronic or lattice scenario, or a combination of
both. In the present work, this issue is addressed among others.
We start by investigating the CDW from an EI perspective. The
corresponding mean-field approach for an extended Falicov-
Kimball model is presented in Sec. II A. We show that the
EI scenario is insufficient to explain a stable chiral CDW. We
proceed by including the lattice degrees of freedom. We find
that the electron-phonon interaction and the phonon-phonon
interaction both must be taken into account at least up to
quartic order in the lattice distortion in order to stabilize
chiral charge order. This is elaborated in Sec. II B, and in
Sec. II C we present the ground-state energy as a function of the
static lattice distortion. In Sec. II D the CDW phase boundary
is derived. The CDW state is characterized analytically in
Sec. II E. Section III contains our numerical results. Here we
give the functional dependencies of the relevant phases on the
lattice distortion, show the finite-temperature phase diagram,
derive the ground-state phase diagram, and estimate the
interaction constants for 1T -TiSe2. In Sec. IV we summarize
and conclude.

FIG. 2. (Color online) First Brillouin zone (BZ) of 1T -TiSe2 with
high-symmetry points in the normal phase (solid line) and in the CDW
phase (dot-dashed line). Red arrows show the CDW ordering vectors.
Left panel: projection onto the xy plane, right panel: projection onto
the yz plane.

II. MODEL AND THEORETICAL APPROACH

A. Electronic degrees of freedom

1. Band structure

Since the electronic properties of 1T -TiSe2 are dominated
by the electrons near the Fermi energy, in what follows we
take into account only the top valence band and the lower
conduction band. The maximum of the valence band is located
at the � point. The conduction band exhibits minima at the
three L points; see Fig. 2.

To facilitate the notation, we artificially split the conduction
band into three symmetry-equivalent bands indexed by α, each
having one minimum at the point Lα . The band dispersions
of these three conduction bands mimic the true band structure
close to the L points.10 Figure 3 illustrates the situation close
to the Fermi level.

Then the free electron part is written as

He =
∑

k

εkf f
†
k fk +

∑
k,α

εkαc
†
kαckα, (2)

where f
(†)
k annihilates (creates) an electron in the valence band

with momentum k and c
(†)
kα annihilates (creates) an electron in

the conduction band with momentum k and band index α. The
corresponding valence-band dispersion and the conduction-
band dispersions are denoted as εkf and εkα . They will be
specified in Sec. III A. The spin of the electrons is neglected.
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FIG. 3. (Color online) Model band structure in the normal phase.
The valence band colored black, and the conduction bands are
colored red, blue, and green. (a) Band structure along high-symmetry
directions of the BZ, (b) band dispersion close to the Fermi level.
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Taking the band structure and a band filling factor n = 1/4
into account, 1T -TiSe2 resides in the vicinity of a semimetal-
semiconductor transition; see Fig. 3. Accordingly the chemical
potential μ is determined by

nf +
∑

α

nα = 1, (3)

where

nf = 1

N

∑
k

〈
n

f

k

〉 = 1

N

∑
k

〈f †
k fk 〉, (4)

nα = 1

N

∑
k

〈
nα

k

〉 = 1

N

∑
k

〈c†kαckα〉. (5)

Here N denotes the total number of lattice sites.
Regarding the isotropy (anisotropy) of the valence (con-

duction) band(s) the Fermi surface of 1T -TiSe2 is only poorly
nested,15 which rules out a nesting mechanism for the CDW
formation even in a simplified 2D setting.

2. Electron-electron interaction

Due to the strong screening of the Coulomb interaction in
1T -TiSe2,23 we assume a local electron-electron interaction,

He−e = Ucc

N

∑
k,k′,q

∑
α

∑
β>α

c
†
k+qαckαc

†
k′βck′+qβ

+ Uf c

N

∑
k,k′,q

∑
α

f
†
k+qfk c

†
k′αck′+qα, (6)

where Ucc denotes the Coulomb repulsion among the conduc-
tion electrons. The on-site Coulomb interaction Uf c between
valence and conduction band electrons determines the distri-
bution of electrons between these “subsystems” and therefore
may drive a valence transition, as observed, e.g., in heavy
fermion and intermediate-valence Tm[Se,Te] compounds.24,25

If the total electronic model contains an explicit hybridization
between f and c electrons26,27 or, as in our case, dispersive c

and f bands,28 coherence between c and f particles can de-
velop. Then Uf c may lead to a pairing of c-band electrons and
f -band holes, i.e., to the formation of excitons, and, provided
a large enough number of excitons is created, a subsequent
spontaneous condensation of these composite quasiparticles
may develop. In real systems this excitonic instability is
expected to occur, when semimetals with very small band
overlap or semiconductors with very small band gap are cooled
to extremely low temperatures.29,30 The excitonic condensate
then typifies a macroscopic phase-coherent insulating state, the
EI, which separates the semimetal from the insulator.31,32 From
a theoretical point of view, Falicov-Kimball-type models seem
to be the most promising candidates for realizing collective
exciton phases. This holds particularly for the generic two-
band extended Falicov-Kimball model (EFKM), where an
EI ground state has been proven to exist in one and two
dimensions by constrained-path Monte Carlo simulations.28,33

Subsequent Hartree-Fock, slave-boson, and projector-based
renormalization techniques yield the 2D EFKM ground-state
phase diagram in even quantitative accordance with unbiased
Monte Carlo data,33–42 supporting the applicability of these
analytical approaches also in three dimensions and for more
complicated situations.

The electronic part of our Hamiltonian,

HmEFKM = He + He−e, (7)

can be viewed as a multiband extended Falicov-Kimball
model (mEFKM). We note that the mEFKM was studied
previously and has been shown to reproduce the angle-resolved
photoemission spectroscopy data for 1T -TiSe2 at temperatures
below the critical temperature,9,10,43–45 as well as above but
close to the critical temperature.23,46

We note that the mEFKM exhibits a particular U(1) sym-
metry. This can be seen by applying the unitary transformation
Uϕ,α = eiϕSα with Sα = 1

2

∑
i(f

†
i fi − c

†
iαciα). The operators

f
(†)
i and c

(†)
iα annihilate (create) an electron at Wannier site i.

Obviously we have

HmEFKM = Uϕ,α HmEFKM U †
ϕ,α. (8)

This symmetry leads to a degeneracy between chiral and
nonchiral CDWs (see below).

To proceed, we perform a Hartree-Fock decoupling of the
electron-electron interaction terms:

Ucc

N

∑
k,k′,q

∑
α

∑
β>α

c
†
k+qαckαc

†
k′βck′+qβ

→ Ucc

∑
k

∑
α

∑
β �=α

c
†
kαckαnβ − NUcc

∑
α

∑
β>α

nαnβ, (9)

Uf c

N

∑
k,k′,q

∑
α

f
†
k+qfk c

†
k′αck′+qα

→ Uf c

∑
α

nα

∑
k

f
†
k fk + Uf cnf

∑
k,α

c
†
kαckα

−NUf cnf

∑
α

nα −
∑

α

�Qα

∑
k

c
†
k+Qααfk

−
∑

α

�∗
Qα

∑
k

f
†
k ck+Qαα + N

Uf c

∑
α

|�Qα|2. (10)

Here we introduced the EI order parameter functions

�Qα = Uf c

N

∑
k

〈f †
k ck+Qαα〉, (11)

�∗
Qα = Uf c

N

∑
k

〈c†k+Qααfk 〉. (12)

Since the experiments on 1T -TiSe2 suggest that the spon-
taneous hybridization of the valence band with one of the
three conduction bands is the dominant effect of the electron-
electron interaction,9 in deriving Eq. (9), we neglected all terms
that mix different conduction bands.

The resulting decoupled Hamiltonian takes the form

H̄mEFKM =
∑

k

ε̄kf f
†
k fk +

∑
k,α

ε̄kαc
†
kαckα

−
∑
k,α

�Qαc
†
k+Qααfk −

∑
k,α

�∗
Qαf

†
k ck+Qαα

−NUf cnf

∑
α

nα − NUcc

∑
α

∑
β>α

nαnβ

+ N

Uf c

∑
α

|�Qα|2, (13)
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with shifted f - and c-band dispersions:

ε̄kf = εkf + Uf c

∑
α

nα, (14)

ε̄kα = εkα + Uf cnf + Ucc

∑
β �=α

nβ. (15)

The EI low-temperature phase is characterized by non-
vanishing expectation values 〈f †

k ck+Qαα〉, 〈c†k+Qααfk 〉, which
cause a correlation gap in the excitation spectrum. The mean
local electron density in the EI phase is

ni = 1 + 2

N

∑
k,α

∣∣〈c†k+Qααfk

〉∣∣ cos(QαRi + θα), (16)

where

1

N

∑
k

〈
c
†
k+Qααfk

〉 = 1

N

∑
k

∣∣〈c†k+Qααfk

〉∣∣eiθα = �∗
Qα

Uf c

. (17)

Comparing Eq. (16) with relation (1) we recognize the
amplitude of the charge density modulation as the modulus
of the hybridization function

∑
k〈c†k+Qααfk 〉. Likewise we can

identify the initial phases θα in the density modulation as the
phases of the hybridization functions (which coincide with the
phases of the EI order parameters).

Note that previous theoretical studies of the mEFKM10,11

did not include the phase differences of the θα , which will
be essential for the establishment of a chiral CDW.5–8 If one
is not concerned with the chiral CDW problem, disregarding

the phases θα seems to be justified since the U(1) symmetry
of the mEFKM prevents the appearance of a stable chiral
CDW anyway. We show this by analyzing the behavior of
the electron operators under the unitary transformation Uϕ,α:
c̃

(†)
iα = Uϕ,αc

(†)
iα U †

ϕ,α and f̃
(†)
i = Uϕ,αf

(†)
i U †

ϕ,α . The hybridiza-

tion functions (in real space) then transform as 〈c†iαfi〉eiQαRi =
e−iϕ〈c̃†iαf̃i〉eiQαRi ; that is, the phases θα can be controlled by the
unitary transformation through the angles ϕ. However, in view
of (8) the total energy is independent of the θα . Hence these
phases can be chosen arbitrarily, and there is no mechanism
that stabilizes a given phase difference. Therefore the mEFKM
is insufficient to describe a chiral CDW in 1T -TiSe2. In
the following we will demonstrate that the coupling of the
electrons to the lattice degrees of freedom can break the U(1)
symmetry of the mEFKM and consequently can stabilize a
chiral CDW.

B. Lattice degrees of freedom

1. Electron-phonon coupling

For 1T -TiSe2 there are experimental and theoretical evi-
dences that the weak periodic lattice distortion observed comes
from a softening of a transverse optical phonon mode.16–20 We
therefore include a single-mode electron-phonon interaction
in our model. If we expand the electron-lattice interaction
up to quartic order in the lattice distortion, we obtain the
electron-phonon interaction as

He-ph = H
(1)
e-ph + H

(2)
e-ph + H

(3)
e-ph + H

(4)
e-ph, (18)

where

H
(1)
e-ph = 1√

N

∑
k,q

∑
λ,λ′

g1(k,q,λ,λ′)(b†q + b−q)c†kλck+qλ′ , (19)

H
(2)
e-ph = 1

2N

∑
k,q1,q2

∑
λ,λ′

g2(k,q1,q2,λ,λ′)
(
b†q1

+ b−q1

)(
b†q2

+ b−q2

)
c
†
kλck+q1+q2λ′ , (20)

H
(3)
e-ph = 1

6N
3
2

∑
k,q1,q2,q3

∑
λ,λ′

g3(k,q1,q2,q3,λ,λ′)
(
b†q1

+ b−q1

)(
b†q2

+ b−q2

)(
b†q3

+ b−q3

)
c
†
kλck+q1+q2+q3λ′ , (21)

H
(4)
e-ph = 1

24N2

∑
k,q1,q2,q3,q4

∑
λ,λ′

g4(k,q1,q2,q3,q4,λ,λ′)
(
b†q1

+ b−q1

)(
b†q2

+ b−q2

)(
b†q3

+ b−q3

)(
b†q4

+ b−q4

)
c
†
kλck+q1+q2+q3+q4λ′ ,

(22)

where b
(†)
q describes the annihilation (creation) operator of a

phonon carrying the momentum q, gi (i = 1,2,3,4) denote the
electron-phonon coupling constants, and λ, λ′ label the band
degree of freedom. Most notably the band-mixing terms, i.e.,
if λ �= λ′ in Eqs. (19)–(22), break the U(1) symmetry of the
mEFKM; i.e., the arbitrariness with respect to the phases θα is
eliminated.

2. Phonon-phonon interaction

Within the harmonic approximation, the Hamiltonian for
the (noninteracting) phonons reads47

Hph =
∑

q

h̄ω(q)b†qbq, (23)
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where ω(q) is the bare phonon frequency. A coupling between
the lattice vibrations results from the anharmonic contributions
in the expansion of the potential for the ions.48 As we will
see below, such an explicit phonon-phonon interaction may
stabilize the chiral CDW phase. We expand the phonon-phonon
interaction also up to quartic order in the lattice displacement.
We obtain

Hph-ph = 1√
N

∑
q1,q2,q3

B(q1,q2,q3)
(
b†q1

+ b−q1

)

× (
b†q2

+ b−q2

)(
b†q3

+ b−q3

)
+ 1

N

∑
q1,q2,q3,q4

D(q1,q2,q3,q4)
(
b†q1

+ b−q1

)

× (
b†q2

+ b−q2

)(
b†q3

+ b−q3

)(
b†q4

+ b−q4

)
. (24)

The explicit expressions of B(q1,q2,q3) and D(q1,q2,q3,q4)
are lengthy. We note only the symmetry relations

B(−q1, − q2, − q3) = B∗(q1,q2,q3), (25)

D(−q1, − q2, − q3, − q4) = D∗(q1,q2,q3,q4), (26)

and point out the constraints

B(q1,q2,q3) ∝ δq1+q2+q3,G, (27)

D(q1,q2,q3,q4) ∝ δq1+q2+q3+q4,G. (28)

Here G is a reciprocal lattice vector of the undistorted
lattice.

3. Frozen-phonon approach

We now apply the frozen-phonon approximation and
calculate the lattice distortion at low temperatures. As
elaborated in Refs. 17–20 the phonons causing the lattice
displacements in 1T -TiSe2 have the momenta Qα shown
in Fig. 2. Their softening is inherently connected to strong
electronic correlations.23 It has been suggested that the Q1,
Q2, and Q3 phonons become soft at the same temperature;18

we therefore assume |g1(k,Q1,λ,λ′)| = |g1(k,Q2,λ,λ′)| =
|g1(k,Q3,λ,λ′)| = g1Q(k), likewise the other electron-phonon
coupling constants, and ω(Q1) = ω(Q2) = ω(Q3) = ω. A
finite displacement of the ions is characterized by 〈b†Qα

〉 =
〈b−Qα

〉 �= 0. We denote the static lattice distortions by

δQα = 2√
N

〈
bQα

〉 = ∣∣δQα

∣∣e−iφα , (29)

δ∗
Qα = 2√

N

〈
b
†
Qα

〉 = ∣∣δQα

∣∣eiφα . (30)

Replacing all phonon operators by their averages, the Hamil-
tonian H = He + He−e + He-ph + Hph + Hph-ph becomes an
effective electronic model,

H̄ =
∑
k,α

g1Q(k)
(
δQαc

†
k+Qααfk + δ∗

Qαf
†
k ck+Qαα

) + 1

2

∑
k

∑
α,β

[
Ā

f

Q(k)f †
k fk + Āc

Q(k)c†kβckβ

][(
δ∗

Qα

)2 + δ2
Qα

]

+ 1

6

∑
k

∑
α,β

{
B̄

αβ

1Q(k)
[
(δ∗

Qβ)2 + δ2
Qβ

] + B̄
αβ

2Q(k)|δQβ |2}(δQαc
†
k+Qααfk + δ∗

Qαf
†
k ck+Qαα

)

+ 1

24

∑
k

∑
α,γ

∑
β �=α

{[
C̃

f

αβ(k)f †
k fk + C̃c

αβ(k)c†kγ ckγ

]
[(δ∗

Qαδ∗
Qβ)2 + (δ∗

QαδQβ)2]

+ [(
C̃

f

αβ(k)
)∗

f
†
k fk + (

C̃c
αβ(k)

)∗
c
†
kγ ckγ

][
(δQαδQβ)2 + (δQαδ∗

Qβ)2
]} + D̂N

∑
α

∑
β>α

[(δ∗
Qαδ∗

Qβ)2 + (δQαδQβ)2 + (δ∗
QαδQβ)2

+ (δQαδ∗
Qβ)2] + D̃N

∑
α

|δQα|4 + h̄ω

4
N

∑
α

|δQα|2 + H̄mEFKM, (31)

where α,β,γ = 1, 2, 3. Moreover, it is D̂ = 2D(Qα,

Qα,Qβ,Qβ), where β �= α, and D̃ = D(Qα,Qα,Qα,Qα). The
electron-phonon and phonon-phonon interaction constants are
considered as real numbers except C̃

f

αβ(k) and C̃c
αβ(k). The

phases of these constants must be taken into account, otherwise
chirality will not develop in our model. For the electron-
phonon coupling constants we use the shorthand notation

g1Q(k) = g1(k,Qα,f,α), (32)

Ā
f

1Q(k) = g2(k,Qα,Qα,f,f ), (33)

Āc
1Q(k) = g2(k,Qα,Qα,1,1), (34)

B̄
αβ

1Q(k) = 3g3(k,Qβ,Qβ,Qα,f,α), (35)

B̄
αβ

2Q(k) = 6g3(k,Qβ, − Qβ,Qα,f,α), (36)

C̃
f

αβ(k) = 6g4(k,Qα,Qα,Qβ,Qβ,f,f ), (37)

C̃c
αβ(k) = 6g4(k,Qα,Qα,Qβ,Qβ,1,1). (38)

We assume for simplicity that the phonon-phonon interac-
tion constants are the same for all combinations of α and
β. In Eq. (31), the term proportional to D̃, coming from
the expansion of the phonon-phonon interaction, guarantees
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that the free energy is bounded from below within our
approximations. Obviously a finite lattice distortion causes a
hybridization between the valence and the conduction bands.
As a consequence a gap in the electronic spectrum opens, just
as in the course of exciton condensation [cf. Eq. (13)]. The
corresponding local electron density is given by Eq. (16).

Of particular interest are the phases θα . Owing to the terms
on the r.h.s. of Eq. (31) proportional to g1Q(k) and B̄

αβ

iQ (k),
these phases are coupled to the phases of δQα . Let us analyze
the possible values of the phases of the static lattice distortion.
We first note that every Qα is half a reciprocal lattice vector in
the normal phase, i.e., e2iQαRi = 1, where Ri is a lattice vector
of the undistorted lattice. Hence

b
†
Qα

= 1√
N

∑
i

b
†
i e

−iQαRi = 1√
N

∑
i

b
†
i e

−iQαRi+2iQαRi

= 1√
N

∑
i

b
†
i e

iQαRi = b
†
−Qα

. (39)

That is, b
†
Qα and b

†
−Qα

create the same phonon. This implies

〈b†Qα
〉 = 〈b†−Qα

〉 = 〈bQα
〉. Consequently 〈bQα

〉 and δQα become
real numbers. However, since a triple CDW is not a simple
superposition of three single CDWs, the situation is more
subtle. Here the change of the periodicity of the lattice caused
by one CDW component affects the formation of the other two
components. To elucidate this in more detail let us assume that
phonon 1 softens at Tc, while phonon 2 and phonon 3 soften at
Tc − δT . As a result of the transition 1 at Tc the periodicity of
the crystal changes and consequently the BZ changes too (see
Fig. 4).

The vectors Q2 and Q3 are no longer half-reciprocal lattice
vectors, and Eq. (39) does not apply. Hence, at Tc − δT , 〈bQ2〉
and 〈bQ3〉 are complex numbers with phases that have to be
determined by minimizing the free energy. For 1T -TiSe2,

FIG. 4. (Color online) BZ in the normal phase (black dotted
hexagon) and (artificial) BZ that would emerge if only the phonon Q1

softens (filled gray hexagon). Red, green, and blue arrows indicate
the ordering vectors Q1, Q2, and Q3, respectively.

δT = 0, but nevertheless the above discussion remains valid.
That is the freedom to fix the phases of the lattice distortions in
an appropriate way results from the fact that one triple-CDW
component must develop in a lattice structure which is already
distorted by the other two triple-CDW components.

C. Ground-state energy

Based on the model (31) we analyze the chiral CDW for-
mation at zero temperature. Taking into account the symmetry
of the conduction bands and the equality of the interaction
constants, we have |δQ1| = |δQ2| = |δQ3| = |δQ| and |�Q1| =
|�Q2| = |�Q3| = |�Q|. Therewith the ground-state energy per
site follows as

Ē

N
= 2

N

∑
k,α

g1Q(k)|δQ|∣∣〈c†k+Qααfk

〉∣∣ cos(φα − θα) + 1

N

∑
k

∑
α,β

|δQ|2[Āf

Q(k)〈f †
k fk 〉 + Āc

Q(k)〈c†kβckβ〉] cos(2φα)

+ 1

3N

∑
k

∑
α,β

|δQ|3∣∣〈c†k+Qααfk

〉∣∣[2B̄
αβ

1Q(k) cos(2φβ) + B̄
αβ

2Q(k)
]

cos(φα − θα)

+ 1

12N

∑
k

∑
α,γ

∑
β �=α

[
C̄

f

αβ(k)〈f †
k fk 〉 + C̄c

αβ(k)〈c†kγ ckγ 〉]|δQ|4[cos(2(φα − φβ) + φC) + cos(2(φα + φβ) + φC)]

+ 4D̂
∑

α

∑
β>α

|δQ|4 cos(2φα) cos(2φβ) + 3D̃|δQ|4 + 3

4
h̄ω|δQ|2 + ĒmEFKM

N
, (40)

where C̃
f (c)
αβ = C̄

f (c)
αβ e−iφC . We note that each phase

θα is exclusively coupled to φα . If
∑

k[g1Q(k) +∑
β(2B̄

αβ

1Q(k) cos(2φβ) + B̄
αβ

2Q(k))|δQβ |2]|〈c†k+Qααfk 〉| > 0,
the choice

θα = φα + (2s + 1)π (41)

minimizes the energy, where s = 0,1,2, . . . . Otherwise θα are
locked to φα + 2sπ . Thus, the relationship between φ1, φ2,
and φ3 is crucial.

The Hamiltonian (31) offers a complex model with many
(unknown) parameters. To proceed we assume the electron-
phonon interaction constants as independent of the momentum
k. Moreover, we assume that Ā

f

Q, Āc
Q, B̄αβ

1Q, B̄αβ

2Q, C̄f

αβ , C̄c
αβ , D̂,

and D̃ are much smaller than Uf c, Ucc, and g1Q. The magnitude
of the EI order parameter and the static lattice distortion are
then primarily determined by the latter interaction constants,
and the constraint for Eq. (41) simply reduces to g1Q > 0.
Taking only Uf c, Ucc, and g1Q into account and minimizing
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the free energy with respect to the EI order parameter
yields (∂F/∂|�Q|) = (∂F/∂|�̃Q|) + 6|�Q|/Uf c = 0, while
the minimization with respect to the static lattice distor-
tion yields (∂F/∂|δQ|) = g1Q(∂F/∂|�̃Q|) + 6h̄ω|δQ|/4 = 0,
where the gap parameter is given by

�̃Qα = g1QδQα − �Qα. (42)

The relation (41) maximizes the modulus of the gap parameter
(supposing g1Q > 0). From the energy minimization with

respect to |�Q| and |δQ|:

|�Q| = Uf c

4

h̄ω

g1Q
|δQ|. (43)

With Eqs. (41) and (43) we can express the ground-state energy
per site as

Ē

N
= 1

N
Ēδ(|δQ|2) + 1

N
Ēφ(|δQ|2,φ1,φ2,φ3), (44)

where

1

N
Ēδ(|δQ|2) = 1

N

∑
k,ν

Ekν

〈
nν

k

〉 − Uf cnf (1 − nf ) − Ucc

3
(1 − nf )2 + 3

4
h̄ω|δQ|2 + 3

16
Uf c

(
h̄ω

g1Q

)2

|δQ|2

+
(

3D̃ − 1

12
B̂2Q

h̄ω

g1Q

)
|δQ|4, (45)

1

N
Ēφ(|δQ|2,φ1,φ2,φ3) = [

Ā
f

Qnf + Āc
Q(1 − nf )

]|δQ|2
∑

α

cos(2φα) − 1

6

h̄ω

g1Q
|δQ|4

∑
α

B̂α
1Q cos(2φα)

+ 1

12

∑
α

∑
β �=α

[
C̄

f

αβnf + C̄c
αβ(1 − nf )

]|δQ|4{cos[2(φα − φβ) + φC] + cos[2(φα + φβ) + φC]}

+ 4D̂|δQ|4
∑

α

∑
β>α

cos(2φα) cos(2φβ). (46)

Here B̂2Q = ∑
α,β B̄

αβ

2Q and B̂α
1Q = ∑

β B̄
βα

1Q . The quasiparticle
energies Ekν (ν = A,B,C,D) are obtained by the diagonal-
ization of the Hamilton matrix

[H ] =

⎛
⎜⎜⎜⎜⎝

ε̄kf �̃∗
Q1 �̃∗

Q2 �̃∗
Q3

�̃Q1 ε̄k+Q11 0 0

�̃Q2 0 ε̄k+Q22 0

�̃Q3 0 0 ε̄k+Q33

⎞
⎟⎟⎟⎟⎠. (47)

Since only |�̃Q|2 enters Ekν we may replace �̃Qα by

|�̃Q| =
(

g1Q + Uf c

4

h̄ω

g1Q

)
|δQ| (48)

in Eq. (47). The choice

D̃ � 4D̂ + 1

3

∑
α

∑
β>α

(
C̄

f

αβ + C̄c
αβ

)

+ 1

6

∑
α

B̂α
1Q

h̄ω

g1Q
+ 1

12
B2Q

h̄ω

g1Q
(49)

guarantees the lower boundary of the energy. In the numerical
calculation we use the equality in Eq. (49).

Only the electron-phonon interaction and the phonon-
phonon interaction enter the phase-dependent part of the
ground-state energy Ēφ . It is the quartic order expansion term
of the electron-phonon interaction and the phonon-phonon
interaction (also in quartic order of the lattice distortion)
that relate the phases φ1, φ2, and φ3 to each other and
favor a phase difference. Without them chirality can not
be stabilized. Note that the 2 × 2 × 2 commensurability

of the CDW is an important prerequisite for Ēφ �= 0.
This rules out incommensurate CDWs exhibiting a chiral
property.

The chiral CDW can be indicated by

dφ = |δQ||(φ1 − φ2)(φ1 − φ3)(φ2 − φ3)|. (50)

dφ is finite only if the CDW is realized and φ1 �= φ2 �= φ3; i.e.,
it fulfills a prerequisite for an order parameter of the chiral
CDW.

D. Phase boundary of the CDW

In contrast to the ground-state energy (44) the constraint
for the CDW phase boundary can be obtained from Eq. (31)
without approximations. The derivative of the free energy with
respect to the static lattice distortion is needed in the limit
|δQ| → 0. To this end, we use the ansatz

EkA = ε̄kf +
∑

α

|δQ|2Āf

Q cos(2φα) + |�̃Q|2dA

+ 1

12

∑
α

∑
β �=α

|δQ|4C̄f

αβ{cos[2(φα − φβ) + φC]

+ cos[2(φα + φβ) + φC]}, (51)

EkB = ε̄k+Q11 +
∑

α

|δQ|2Āc
Q cos(2φα) + |�̃Q|2dB

+ 1

12

∑
α

∑
β �=α

|δQ|4C̄c
αβ{cos[2(φα − φβ) + φC]

+ cos[2(φα + φβ) + φC]}, (52)
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EkC = ε̄k+Q22 +
∑

α

|δQ|2Āc
Q cos(2φα) + |�̃Q|2dC

+ 1

12

∑
α

∑
β �=α

|δQ|4C̄c
αβ{cos[2(φα − φβ) + φC]

+ cos[2(φα + φβ) + φC]}, (53)

EkD = ε̄k+Q33 +
∑

α

|δQ|2Āc
Q cos(2φα) + |�̃Q|2dD

+ 1

12

∑
α

∑
β �=α

|δQ|4C̄c
αβ{cos[2(φα − φβ) + φC]

+ cos[2(φα + φβ) + φC]}. (54)

The unknown parameters dν , ν = A,B,C,D can be calculated
from the characteristic polynomial of the Hamilton matrix.
With the ansatz Eqs. (51)–(54) and Eq. (43), which also holds
up to linear order in the static lattice distortion, the free energy
can be minimized analytically, which gives the exact result in
the limit |δQ| → 0. Considering this limit the constraint for
the CDW phase boundary is obtained as

0 = 3

4
h̄ωg2

1Q + 3

16
Uf c(h̄ω)2 − 3g2

1Q

[
Ā

f

Qnf + Āc
Q(1 − nf )

]

+
(
g2

1Q + 1

4
Uf ch̄ω

)2 1

N

∑
k

(
m̄EkA

n̄EkA

〈
n

f

k

〉 +
〈
n1

k+Q1

〉
ε̄k + Q11 − ε̄kf

+
〈
n2

k+Q2

〉
ε̄k+Q22 − ε̄kf

+
〈
n3

k+Q3

〉
ε̄k+Q33 − ε̄kf

)
, (55)

where

m̄EkA
= ε̄k+Q11ε̄k+Q22 + ε̄k+Q11ε̄k+Q33 + ε̄k+Q22ε̄k+Q33

+ 3ε̄2
kf − 2ε̄kf

(
ε̄k+Q11 + ε̄k+Q22 + ε̄k+Q33

)
, (56)

n̄EkA
= ε̄3

kf − ε̄2
kf

(
ε̄k+Q11 + ε̄k+Q22 + ε̄k+Q33

)
+ ε̄kf

(
ε̄k+Q11ε̄k+Q22 + ε̄k+Q11ε̄k+Q33

+ ε̄k+Q22ε̄k+Q33
) − ε̄k+Q11ε̄k+Q22ε̄k+Q33. (57)

E. Characterization of the CDW state in 1T -TiSe2

Experiments identify a close connection between the
appearance of the CDW state and the periodic lattice displace-
ment in 1T -TiSe2.7 The displacement of the ion m in the unit
cell n is

ũ(n,m) =
∑

α

h̄√
2Mmω

|δQ|ε(m,Qα) cos(QαRn − φα), (58)

where ε(m,Qα) is the polarization vector and Mm is the mass
of the ion m. Clearly each CDW component α produces
a 3D lattice distortion. If φ1 �= φ2 �= φ3, the lattice will be
differently affected by the phonons Q1, Q2, and Q3. Of course
the lattice deformation by the phonon mode Qα is position
dependent; in this way a complicated distortion pattern of
the ions can occur. An instructive picture can be achieved,
however, if one neglects the position dependence in the
xy plane. In this simplified situation, depending on the z

component as a function of the position, the magnitude of

FIG. 5. (Color online) (a) For a chiral ordering the maximum
lattice distortion due to the phonon Qα may be located in different
ionic layers. (b) The Se ions in the upper layer are differently
affected by the phonons having momentum Q1, Q2, or Q3. For further
discussion see text.

the lattice displacement differs along Q1, Q2, and Q3. As a
result the different ionic layers of 1T -TiSe2 are dominated
by different phonon modes.7 The situation where the lower
Se-ion layer is largely affected by the phonon mode Q3,
the Ti-ion layer by phonons with momentum Q2, and the
upper Se-ion layer by the Q1 phonon mode, is illustrated
schematically in Fig. 5(a).

Let us consider the upper plane of Se ions, which is
analyzed in scanning tunneling microscopy experiments.5

There, a relative difference of the phases φα leads, e.g.,
to a stronger displacement of the ions in the direction of
Q1 than in the direction of Q2 and Q3 [see Fig. 5(b)].
Then the CDW transition can be viewed as the formation
of “virtual layers” with ordering vectors assigned to a helical
structure.5 This distortion scenario equates with a fixed phase
difference. Thereby the only crucial parameters are φ1, φ2,
and φ3; the finite z component of the ordering vectors is
not a required prerequisite for the chiral CDW. Although the
different orbital character of the CDW components do not
directly influence the charge modulation, the phase difference
leads to a different transfer of spectral weight along Q1, Q2, and
Q3 and the formation of a chiral CDW necessarily generates
an orbital-ordered state.8

Equation (40) specifies values for the phases θα and φα .
Which particular phase takes one of these values remains open.
For instance, the simultaneous transformations θ2 → θ3 and
φ2 → φ3 do not change the energy, but convert a clockwise
chiral CDW in an anticlockwise one. The degeneracy of these
two CDW states is in accord with the experimental findings
for 1T -TiSe2.5

As is apparent in Eq. (43), for finite Uf c and g1Q the EI
order parameter |�Q| > 0 if and only if |δQ| > 0. This can
also be argued on physical grounds. Let us first consider the
case of vanishing electron-phonon coupling. In the EI phase
(|�Q| > 0) the system realizes a CDW. When g1Q becomes
finite in addition, the lattice adjusts commensurate with the
electron density modulation. Hence, in this case any finite g1Q
immediately results in |δQ| > 0. On the other hand, at vanish-
ing Coulomb interaction but sufficiently large g1Q > g1Q,c, a
lattice instability develops leading to a finite

∑
k〈c†k+Qααfk 〉.

This hybridization parameter enters the explicit equation
for the EI order parameter; see Eq. (12). |�Q| > 0 then
follows from any finite Coulomb interaction. Our approach
therefore does not discriminate between an excitonic and
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phonon-driven instability if both electron-electron and
electron-phonon interactions are at play.

III. NUMERICAL RESULTS

A. Model assumptions

In view of the quasi-2D crystallographic and electronic
structure of 1T -TiSe2, and in order to simplify the numerics,
we restrict the following analysis to a strictly 2D setting. More-
over, being close to the Fermi energy, we will approximate the
bands parabolically:10

εkf = −tf
(
k2
x + k2

y

)
, (59)

εk1 = txc (kx − Q1x)2 + tyc (ky − Q1y)2 + Ec, (60)

with hopping amplitudes tf , txc , and t
y
c . The other two

conduction bands εk2 and εk3 have analogous dispersions, but
the momenta are rotated by 2π/3 and 4π/3, respectively. All
three conduction bands share the same minimum Ec; see Fig. 3.

From the band dispersion provided by Monney et al. in
Ref. 10 we derive tf = 1.3 eV, which will be taken as the
unit of energy hereafter, and txc = 0.042 and t

y
c = 0.105.

The bare phonon frequency is estimated as h̄ω = 0.013, in
accordance with the value given by Weber et al. in Ref. 20.
Furthermore, we set Ec = −3.30 and Ucc = Uf c + 1.0. Note
that Ec is the minimum of the bare conduction band. The
effective band overlap will be significantly smaller due to the
Coulomb interaction induced Hartree shift. If it is not explicitly
noted we take B̂α

1Q = 0.5 × 10−4, B̂2Q = 10−4, C̄
f

αβ = C̄c
αβ =

8.5 × 10−4, D̂ = 10−5, and φC = 3π/10.
The self-consistency loop, comprising the determination

of the total and partial particle densities and the chemical
potential, is solved iteratively until the relative error of each
physical quantity is less than 10−6. The numerical integrations
were performed using the Cubpack package.49

B. Formation scenario of the chiral CDW

We start with the analysis of the ground-state energy (T =
0), where we treat the static lattice distortion as a variational
parameter. Without loss of generality we choose φ1 = π/2.
The other phases φ2 and φ3 are determined by minimizing
Ēφ/N using a simplex method. The results for Uf c = 2.5 and
g1Q = 0.03 are shown in Fig. 6.

Since we assumed the nonlinear electron-phonon and the
phonon-phonon interaction constants are much smaller than
Uf c, Ucc, and g1Q, the energy Ē/N ≈ Ēδ/N and the (physical)
static lattice distortion, given by the dashed lines in Fig. 6, is
primarily determined by the Coulomb interaction and g1Q.

We find a complex formation scenario for the chiral
property. For |δQ| → 0 all phases are equal, i.e., φ1 = φ2 =
φ3 = π/2 and the CDW is nonchiral. With growing static
lattice distortion φ2 = φ3 �= φ1. Compared with the normal
phase and the limit |δQ| → 0 the mirror symmetry is reduced
in this state. However, there exists a mirror symmetry along
Q1 (cf. Fig. 1), and the CDW is still nonchiral. If the static
lattice distortion exceeds a threshold, chirality sets in and
φ1 �= φ2 �= φ3.

FIG. 6. (Upper panels) Phases and (lower panels) ground-state
energy as a function of the static lattice distortion. The dashed lines
designate the physical value of the static lattice distortion. We set
φ1 = π/2 and the interband Coulomb interaction is Uf c = 2.5. For
the electron-phonon interaction we take g1Q = 0.03, (a) Ā

f

Q = Āc
Q =

10−4, and (b) Ā
f

Q = Āc
Q = 5 × 10−4.

With increasing Ā
f (c)
Q the threshold for the static lattice

distortion that separates the chiral and the nonchiral CDW
grows; see Fig. 7. The electron-phonon interaction constant
g1Q barely influences the chiral property of the CDW.

The scenario shown in Fig. 6 suggests that coming from the
uniform, high-temperature phase and lowering T there is first
a transition to the nonchiral CDW at Tnonchiral CDW. Chirality
is formed at Tchiral CDW < Tnonchiral CDW. This sequence of
transitions agrees with the result from the Landau-Ginzburg
approach7,8 and is supported by very recent x-ray diffraction
and electrical transport measurements.50 The difference be-
tween Tnonchiral CDW and Tchiral CDW is estimated experimentally
to be less than 10 K. Moreover, the suggested transition
scenario does not contradict experiment, where 1T -TiSe2 is
gradually doped with Cu until the CDW is suppressed in
favor of a superconducting phase.51 Here chirality is present
until the breakdown of the CDW. Since the transition from
the CDW to the superconducting phase is affirmed as a first
order transition,52 |δQ| does not have to be small at the phase
boundary and chirality may exist.

To combine our approach with the Landau-Ginzburg treat-
ment we set B̂α

1Q = 0, D̂ = 0, neglect the terms cos(2(φα +
φβ) + φC), and set φC = 0. Our model then reproduces
the functional dependency of the free energy functional in
Refs. 7 and 8. The Landau-Ginzburg parameters can then be

0 0.5 1 1.5 2 2.5 3
|δQ|

0

0.01

0.02

0.03

d φ

g1Q=0.03, 
_
AQ

f
=

_
AQ

c
=10

-4

g1Q=0.03, 
_
AQ

f
=

_
AQ

c
=5x10

-4

g1Q=0.11, 
_
AQ

f
=

_
AQ

c
=10

-4

FIG. 7. Chiral-CDW characteristic quantity dφ as a function of
the static lattice distortion. The solid line represents the result for
g1Q = 0.03 and Ā

f

Q = Āc
Q = 10−4, the long-dashed line is the result

for g1Q = 0.03 and Ā
f

Q = Āc
Q = 5 × 10−4, and the dotted line shows

the result for g1Q = 0.11 and Ā
f

Q = Āc
Q = 10−4.
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FIG. 8. (Color online) (a) Phases and ground-state energy as
a function of the static lattice distortion, where the functional
dependency on the phases φα is assumed as in Refs. 7 and 8.
(b) Comparison of the phase-dependent part of the ground-state
energy Eq. (46) (black solid line) and the counterpart for the phase
dependency as suggested by van Wezel7,8 (red dot-dashed line). The
small vertical lines in the inset indicate the critical |δQ| for the onset of
chirality in the respective approximation scheme. In both figures the
dashed line designates the physical value of the static lattice distortion.
The model parameters are Uf c = 2.5, g1Q = 0.03, Āf

Q = Āc
Q = 10−4.

expressed as

3

2
a0 = −3

4
h̄ω − 3

16
Uf c

(
h̄ω

g1Q

)2

, (61)

1

2
a1(1 − γ ) = Ā

f

Qnf + Āc
Q(1 − nf ), (62)

3

8
(15c0 + 8d0) = 3D̃ − B̂2Q

h̄ω

g1Q
, (63)

3

4
c2 = C̄

f

αβnf + C̄c
αβ(1 − nf ). (64)

Figure 8(a) shows an example for this scheme.
Note that the phases φα are periodic with π and Fig. 8(a)

shows that φ2 = −φ3, which was obtained analytically in
Refs. 7 and 8. Most notably, if the cos(2(φα + φβ) + φC)
contribution and the phase φC are neglected the “intermediate”
state where φ2 = φ3 �= φ1 is missing. The chiral CDW emerges
directly from the nonchiral CDW, where φ1 = φ2 = φ3 =
π/2. The comparison of the phase-dependent part Ēφ/N

shows that the approximation provided by Eq. (46) exhibits
the lower energy. The onset of the chiral CDW differs only
slightly between the two approximation schemes.

C. Phase diagram of the mEFKM

To set the stage for the analysis of the interplay of
Coulomb and electron-phonon interaction effects we first
discuss the phase diagram of the pure mEFKM; see Fig. 9.
Here, since g1Q = 0 (and as a result δQα = 0), the EI low-
temperature phase typifies a normal CDW. As for the EFKM
on a square lattice (see inset), at T = 0 we find a finite
critical Coulomb strength above which the EI phase does not
exist. This is because the large band splitting caused by the
Hartree term of the Coulomb interaction prevents c-f electron
coherence.42

In contrast to the EFKM, in our four-band model we
also find a critical lower Coulomb strength for the EI phase.
This can be understood as follows: since the valence band is
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FIG. 9. Phase diagram of the mEFKM. The inset displays the
schematic phase diagram of the simplified two-band EFKM on a
square lattice according to Ref. 42.

isotropic while the conduction-band dispersions are strongly
anisotropic, particles close to the Fermi level do not find a large
number of partners with appropriate momentum for electron-
hole pairing. Thus, for Uf c smaller than a critical Coulomb
attraction, the amount of energy to create a macroscopic
number of excitons is larger than the energy gain from the
condensation transition into the EI state. Therefore the system
remains in the semimetallic phase.53 The rather abrupt increase
of the critical temperature at the lower critical Coulomb
interaction is due to the degeneracy of the conduction bands
and the particular anisotropy used.

D. Influence of the lattice degrees of freedom

We now analyze the situation when phonons participate
in the CDW formation. In Fig. 10 the critical temperatures
for g1Q = 0.03 and g1Q = 0.11 can be found. For very small
electron-phonon coupling the phase diagram resembles the
situation for the mEFKM. As the interaction strength g1Q
increases the situation changes dramatically. For sufficiently
large electron-phonon couplings, we no longer find critical
lower and upper values Uf c for the CDW transition and the
transition temperature increases linearly with Uf c. That is the
critical temperature is significantly enhanced by g1Q. Evidently
electron-hole attraction and electron-phonon coupling act
together in the formation of a very stable CDW phase.

The impact of the Coulomb interaction and the electron-
phonon interaction is summarized by the ground-state phase
diagram shown in Fig. 11. For weak electron-phonon cou-
plings g1Q the CDW is mainly driven by the Coulomb
attraction Uf c between electrons and holes. The greater g1Q,
the larger the region where the CDW is stable. For g1Q > 0.09
the electron-phonon coupling alone can cause the CDW

0 1 2 3 4 5
Ufc

0

0.5

1

1.5

T

g1Q = 0.03
g1Q = 0.11

FIG. 10. CDW phase boundaries for g1Q = 0.03 (solid line) and
g1Q = 0.11 (dashed line).
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FIG. 11. (Color online) Ground-state phase diagram of the
mEFKM with additional electron-phonon coupling. The CDW phase
is characterized by a finite gap parameter |�̃Q|. The red line at g1Q = 0
marks the EI phase of the pure mEFKM. The blue line at Uf c = 0
refers to a CDW induced solely by the electron-lattice interaction. The
green point designates the range of model parameters appropriate for
1T -TiSe2.

transition, even at Uf c = 0 (blue line in Fig. 11). Depending
primarily on the magnitude of the static lattice distortion the
CDW can be chiral in this limit, whereas the CDW in the
opposite EI limit does not exhibit chirality (g1Q = 0, red line
in Fig. 11).

E. Relation to 1T -TiSe2

Based on the phase diagram derived for the mEFKM with
electron-phonon coupling, we now attempt to estimate the
electron-electron and electron-phonon interaction constants,
Uf c and g1Q, for 1T -TiSe2. To make contact with experiments
we take the displacements of the Ti ions measured by Di
Salvo et al.: ũ(n,m = Ti) = 0.04Å.4 Then, from Eq. (58),
we can specify the value of |δQ|. For 1T -TiSe2, the gap
parameter was determined experimentally as 120 meV by
Monney et al.; see Ref. 44. Adjusting this value to our
theoretical results yields Uf c ≈ 2.5 (≈ 3 eV) and g1Q ≈ 0.03
(≈ 0.04 eV); see the green marker in Fig. 11. For these values
both the theoretical ion displacement and gap parameter are
in the same order of magnitude as the measured ones. Using
Uf c ≈ 2.5 for 1T -TiSe2, the electron-hole pairing is BCS-like.
Since g1Q � 0.03 is too small to cause a CDW for vanishing
Coulomb interaction and, as discussed above, the EI scenario
alone will not yield a stable chiral CDW, our results are in
favor of a combined lattice-deformation/EI mechanism for the
experimentally observed chiral CDW transition, as suggested
in Refs. 22 and 54.

IV. CONCLUSIONS

In this work we have argued how the observed chiral charge-
density-wave (CDW) phase in 1T -TiSe2 may be stabilized.
In the framework of the multiband extended Falicov-Kimball
model (mEFKM) we showed that a purely electronic, exciton
pairing and condensation, mechanism is insufficient to induce

the observed (long-ranged) chiral charge order. We propose
that the coupling of the electrons to the lattice degrees of
freedom is essential for the formation of a chiral CDW
state.

We note that in our model clockwise and anticlockwise
CDWs are degenerate. This is in accord with experimental
findings.5 The chiral property can properly be observed
in the ionic displacements accompanying the CDW in
1T -TiSe2.

Whether the chiral CDW is stabilized depends particularly
on the magnitude of the static lattice distortion and also on
the ratios of the electron-phonon, respectively the phonon-
phonon, interaction constants. Our analysis confirms the
sequential transition scenario Tchiral CDW < Tnonchiral CDW as was
proposed in Refs. 7 and 8 and corroborated experimentally.50

However, we extended this scenario by the inclusion of further
interactions. This leads to a CDW state for Tchiral CDW < T <

Tnonchiral CDW, where the mirror symmetry is reduced compared
to the normal phase, but chirality is not yet formed.

Concerning the microscopic mechanism underlying the
CDW transition, we demonstrated that electron-electron in-
teraction and electron-phonon coupling support each other in
driving the electron-hole pairing and finally the instability.
This suggests that the CDW transition in 1T -TiSe2 is due
to a combined lattice distortion and exciton-condensation
effect. The outcome is a spontaneous broken-symmetry CDW
low-temperature state with small but finite lattice deformation.
Of course, both the mean-field treatment of the Coulomb
interaction and the frozen-phonon approach are rather crude
approximations and a more elaborated study of the complex
interplay between the electronic and phononic degrees of
freedom is highly desirable to confirm our proposed scenario
for the chiral CDW transition in 1T -TiSe2.

Let us finally point out that we called |�Q| the excitonic-
insulator order parameter on account of its analog in the
EFKM.35–42 The meaning of a finite |�Q| in the presence of a
band coupling is imprecise however. Likewise a spontaneous
hybridization of the valence band with one of the conduction
bands, signaling the exciton condensate in the mEFKM, may
be induced by a sufficiently large electron-phonon coupling
g1Q. A general criterion for the formation of an exciton
condensate in a strongly coupled band situation has not been
established to date. This is an open issue which deserves further
analysis because of its relevance in characterizing the nature
of CDW transitions also in other materials.55,56

ACKNOWLEDGMENTS

We thank P. Aebi, K. W. Becker, F. X. Bronold, D. Ihle,
G. Monney, and N. V. Phan for valuable discussions. This
work is supported by the Deutsche Forschungsgemeinschaft
through SFB 652 (project B5), by the Fonds National Suisse
pour la Recherche Scientifique through Div. II, the Swiss
National Center of Competence in Research MaNEP, and the
US Department of Energy. C.M. acknowledges also support
by the Fonds National Suisse pour la Recherche Scientifique
under grant PA00P2-142054.

075138-11



ZENKER, FEHSKE, BECK, MONNEY, AND BISHOP PHYSICAL REVIEW B 88, 075138 (2013)

1R. Peierls, Quantum Theory of Solids (Oxford University Press,
Oxford, 1955).
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