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We study the effects of interband hybridization within the framework of an extended Falicov-Kimball model
with itinerant c and f electrons. An explicit interband hybridization breaks the U�1� symmetry associated with
the conservation of the difference between the total number of particles in each band. As a result, the degen-
eracy between multipolar electric and chiral orderings is lifted. We analyze the weak- and strong-coupling
limits of the c-f electron Coulomb interaction at zero temperature, and derive the corresponding mean-field
quantum phase diagrams at half filling for a model defined on a square lattice.
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I. INTRODUCTION

The Falicov-Kimball model1,2 �FKM� was primarily intro-
duced to describe the metal-insulator transition of the mixed-
valence compound SmB6. Later on, the model became
widely accepted as a minimal Hamiltonian for studying sev-
eral strongly correlated electron systems,3–8 in particular,
heavy fermion compounds.9–11 In its original form, the FKM
contains an itinerant c band of electrons that interact via a
local Coulomb repulsion with localized f electrons. The spin
degree of freedom of the electrons is not included. The local
f electron number is strictly conserved and c-f electron co-
herence cannot be established.12 An explicit hybridization
between f and c orbitals provides an opportunity to over-
come this shortcoming.13,14 More recently, it was shown that
a finite f electron bandwidth also induces c-f electron coher-
ence, i.e., it can lead to an excitonic condensate even in
absence of an explicit interband hybridization.15,16

These extended versions of the FKM were used to sub-
stantiate the exciting idea of electronic ferroelectricity
�EFE�.14–18 The ferroelectric phase only appears when the c
and f orbitals have opposite parity under spatial inversion.
The concomitant spontaneous breaking of inversion symme-
try results from a nonvanishing average of �c†f�. Since this
expectation value corresponds to �excitonic� pairing of elec-
trons and holes from different bands, the appearance of EFE
is directly related with the formation of an excitonic insulator
�EI�.19–21

The FKM with two dispersive bands, the so-called ex-
tended FKM �EFKM�, was studied previously for describing
different properties of the EI phase.22–26 However, as it was
shown for the case of opposite-parity orbitals,15,16 the inclu-
sion of a finite interband hybridization can be very relevant
because it removes the U�1� symmetry associated with the
conservation of the difference between the total number of
particles in each band: Nc−Nf. In particular, this hybridiza-
tion term is certainly relevant when the ground-state of the
EFKM corresponds to an excitonic condensate. For the
EFKM with interband hybridization �HEFKM�, the excitonic
condensate is in general replaced by Ising-type phases that
only break discrete symmetries of the Hamiltonian.

In this paper we present a mean-field study of the influ-
ence of an explicit hybridization on the symmetry-broken

states that can take place for the HEFKM. To determine the
ground-state quantum phase diagram of the HEFKM in the
strong- and weak-coupling limits of c-f electron interaction,
we assume that the interband hybridization amplitudes are
small compared to the intraband hopping �transfer� integrals.
Given the nature of the discrete symmetries of the HEFKM,
the natural ground-state candidates are chiral phases �CHPs�
and states with multipolar electric orderings.

II. MODEL

By expressing the orbital flavor as a pseudospin variable,
ci

†�ci↑
† and f i

†�ci↓
† , the Hamiltonian takes the form

H = �
i,�

��ci�
† ci� + �

�ij�,�
t��ci�

† cj� + H.c.� + U�
i

ni↑ni↓

+ v0�
i

�ci↑
† ci↓ + H.c.� + v↑↓�

�ij�
�ci↑

† cj↓ + H.c.�

+ v↓↑�
�ij�

�ci↓
† cj↑ + H.c.� . �1�

Here �ij� indicates that i and j are nearest-neighbor sites. The
fermionic operators ci�

�†� annihilate �create� an electron on the
spin � Wannier orbital of the lattice site Ri. The lattice has a
total number of N sites, and nj�=cj�

† cj� is the particle number
operator for site j ��= �↑ ,↓��. �� denotes the on-site energy
for each orbital, t� are the intraband hopping amplitudes, U
is the local interorbital Coulomb interaction strength, and v�

are the interband hybridization amplitudes, where �=0 for
on-site hybridization and �= �↑↓ , ↓↑� for intersite hybridiza-
tion. The EFKM is recovered from Eq. �1� by setting v�=0.
In this limit, the model has a continuous U�1� symmetry,
which is removed by the inclusion of an explicit hybridiza-
tion. The discrete symmetries that remain for the more gen-
eral HEFKM are spatial inversion and time-reversal invari-
ance.

The pseudospin language of Eq. �1� unveils the similarity
of H with other generic many-body Hamiltonians. The
EFKM �v�=0� becomes an asymmetric Hubbard model, i.e.,
a single band model for electrons with a spin-dependent dis-
persion. We will still use the name “Falicov-Kimball model”
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to indicate that the pseudospin degree of freedom represents
a physical orbital degree of freedom. From now on, we will
consider that H is defined on a square lattice and �ni↑+ni↓�
=1 �half-filled band case�. We will also restrict to zero tem-
perature and measure all energies in units of t↑=1. Finally,
we will assume that the Wannier functions of c and f orbit-
als, �↑�r−Ri� and �↓�r−Ri�, are real.

III. ORDER PARAMETERS

In the rest of the paper we will refer to the pseudospin
simply as “spin.” The spin representation used in Eq. �1�
unveils the SU�2� structure of this internal degree of free-
dom. This degree of freedom is the only one that survives at
low energies in the large U / 	t�	 limit. Consequently, the three
different local or real-space order parameters correspond to
the three components of the local spin variable,

S j =
1

2 �
�,��

cj�
† ����cj��, �2�

where � is the vector of the Pauli matrices. More compli-
cated �or higher order� real-space order parameters involve
products of spin operators in more than one unit cell.

A real-space modulation of �S j
z� leads to orbital ordering.

Here we will only consider the ordering wave vector Q
= �� ,�� that leads to staggered orbital ordering �SOO� be-
cause the effective interaction is antiferromagnetic between
nearest-neighbors and the lattice under consideration is bi-
partite. The corresponding order parameter is

�SOO = �
j

eiQ·Rj�S j
z� . �3�

If the two orbitals have opposite parity, a nonzero �S j
x�

implies the presence of a spontaneous local electric polariza-
tion that turns out to be uniform for the HEFKM. This is the
EFE that was found in previous works for particular limits of
the HEFKM.14–16 The uniform electric polarization is given
by

�P� = p�
j

�S j
x� �4�

with the interband dipole matrix element

p = 2e
 d3r�↑�r�r�↓�r� , �5�

where e is the electron charge. This phase breaks the spatial
inversion symmetry of H.

If the two orbitals have the same parity �for instance s and
d orbitals�, a nonzero modulation of �S j

x� corresponds to an
electric quadrupole density wave �EQDW� as long as the
tensor

q���
		� = e
 d3r���r�r	r	�����r� �6�

is nonzero for ��= �̄�−� �	 ,	�= �x ,y ,z��. In case the tensor
q��̄ �Eq. �6�� vanishes, one has to look for the lowest order
electric multipole that has a nonzero matrix element between

the orbitals �↑�r� and �↓�r�. In the rest of this paper, we will
assume that the tensor q��̄ does not vanish. In second quan-
tization, the local electric quadrupole tensor on the unit cell j
is given by the operator,

Q j = q↑↑nj↑ + q↓↓nj↓ + 2q↑↓Sj
x. �7�

We note that q↑↓=q↓↑. The corresponding quadrupolar order
parameter in momentum space is given by

�Qk� = �
j

eik·Rj�Q j� . �8�

Again, for the Hamiltonian under consideration, the wave
vector of the electric quadrupolar ordering is k=Q. Equation
�7� implies that a nonzero modulation of the x-spin compo-
nent, �S j

x�, corresponds to an EQDW. While translational
symmetry is broken in this phase, time-reversal and spatial
inversion symmetries are conserved. We note that the first
two terms of Eq. �7� imply that orbital ordering will also lead
to an EQDW. However, as it is also clear from Eq. �7�, the
quadrupolar tensors associated with the ordering along the z
and x axes are different. The quadrupolar electric moment
that is modulated under staggered orbital ordering �staggered
z component� corresponds to a linear combination of the ten-
sors q↑↑ and q↓↓. On the other hand, the staggered ordering
of the x-spin component involves a modulation of a quadru-
polar electric tensor proportional to q↑↓ �hybridization-
induced quadrupolar electric moment�. In order to simplify
the notation, we will use “EQDW” to denote the staggered
ordering of the x-spin component and SOO for the staggered
ordering of the z-spin component.

Finally, a nonzero �S j
y� implies the spontaneous emer-

gence of a current-density distribution between the two or-
bitals of the unit cell j.21,27 This can be easily verified if we
neglect the overlap between orbitals that belong to different
unit cells. In that case, the current-density operator at a point
r near R j is given by

j j�r� =



me
Sj

y�
�

���̄�r − R j��r���r − R j� , �9�

where me is the electron mass and the prefactor � takes the
value +1 for ↑ and −1 for ↓. We note that this current density
flows between the two orbitals of the same unit cell �these
are atomic currents when the two orbitals belong to the same
ion�, in contrast to the orbital currents found in Ref. 28 that
flow between different unit cells. This CHP breaks time-
reversal symmetry and the physical order parameter is the
lowest order nonzero multipole of the current-density distri-
bution given by Eq. �9�. The chiral ordering is staggered for
orbitals with the same parity and uniform for orbitals with
opposite parity. For instance, if we are considering two p
orbitals, the staggered chiral ordering of the y-spin compo-
nent corresponds to orbital antiferromagnetism because the
current distribution given by Eq. �9� generates a net magnetic
dipole moment. Since we will consider the general case of
any arbitrary pair of orbitals, we will use “CHP” to denote
the uniform ordering of the y-spin component �same parity
orbitals� and “staggered chiral phase” �SCHP� to denote the
staggered ordering.
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IV. STRONG-COUPLING REGIME

For the case 	t�	 , 	v�	�U, we can perform a large-U ex-
pansion, thereby reducing the HEFKM �Eq. �1�� to an effec-
tive strong-coupling Hamiltonian, Hsc, that reproduces the
low-energy spectrum of the original model.

A large on-site Coulomb interaction splits the spectrum of
the HEFKM Hamiltonian into high- and low-energy parts.
For t�=v�=0, the lowest-energy subspace is generated by
the 2N states that have one electron per site. The high-energy
subspaces are separated by energy gaps equal to Und, where
nd is the number of double occupied sites. For nonzero t� and
v�, the electrons are no longer completely localized at their
ions, i.e., an electron can gain kinetic energy by visiting vir-
tually a neighboring site. Since we are considering the half-
filled band case �one particle per site�, the low-energy effec-
tive model becomes a spin Hamiltonian Hsc. The expression
for Hsc up to second order in the kinetic-energy terms is

Hsc = �
�ij�

�JxxSi
xS j

x + JyySi
yS j

y + JzzSi
zS j

z� + �
�ij�

�JxzSi
xS j

z

+ JzxSi
zS j

x + C� + �
i

�BSi
z + 2v0Si

x� , �10�

where

Jxx =
4

U
�t↑t↓ + v↑↓v↓↑� , �11�

Jyy =
4

U
�t↑t↓ − v↑↓v↓↑� , �12�

Jzz =
2

U
�t↑

2 + t↓
2 − v↑↓

2 − v↓↑
2 � , �13�

Jxz =
4

U
�t↑v↓↑ − t↓v↑↓� , �14�

Jzx =
4

U
�t↑v↑↓ − t↓v↓↑� , �15�

C = �↑ + �↓ −
1

2U
�t↑

2 + t↓
2 + v↑↓

2 + v↓↑
2 � , �16�

B = �↑ − �↓. �17�

It is well known that the half-filled isotropic Hubbard model
can be mapped on an effective Heisenberg model in the limit
of a large Coulomb repulsion. For the more general EFKM,
the intraband hopping amplitudes and the different on-site
potentials lead to an effective XXZ model in a magnetic field
B along the z axis. B is simply the energy difference between
the two orbitals.15 As expected, the interband hybridization
of the HEFKM generates anisotropic terms that explicitly
break the U�1� invariance under uniform spin rotations about
the z axis. While the intersite hybridization leads to aniso-
tropic exchange terms, the on-site hybridization leads to a
Zeeman coupling to a uniform field along the x axis.

For low enough values of B and no interband hybridiza-
tion, the ground-state of Hsc exhibits SOO. The simple
reason is that Jzz� 	Jxx,yy	, i.e., the effective XXZ model is
easy-axis.15 If Jzz is significantly larger than 	Jxx,yy	, the SOO
remains robust when the interband hybridization is included.
Clearly, there exists a critical value of B that leads to a spin-
flop transition to an ordered phase in the XY plane with a
uniform component along the z axis �canted XY phase�. In
absence of interband hybridization, the U�1� invariance of
the EFKM implies that spin component perpendicular to the
applied field can point along any direction of the XY plane.
In other words, there is a continuous ground-state degen-
eracy that includes the EQDW �EFE� and SCHP �CHP� for
orbitals with the same �opposite� parity. In this case, the in-
clusion of interband hybridization is very relevant because it
lifts the continuous degeneracy and stabilizes only one of the
two possible Ising-type orderings �along the x or y spin di-
rection�.

For orbitals with opposite parity, we have t↑t↓0, v↓↑=
−v↑↓, and v0=0. These relationships are derived from simple
symmetry considerations. In this case Jxx=− 4

U �	t↑t↓	+v↑↓
2 �,

Jyy =− 4
U �	t↑t↓	−v↑↓

2 �, and Jzx=−Jxz. Since Jxx ,Jyy 0 and
	Jxx	� 	Jyy	, the energy is minimized by a ferromagnetic
alignment of the spins along the x direction that corresponds
to an EFE phase. Since this was previously shown in Ref. 15,
from now on we will concentrate on the case of equal parity
orbitals. In this case, we have t↑t↓�0, v↓↑=v↑↓, and v0 can
be nonzero if the two orbitals belong to different ions. Then
Jxx�Jyy and Jzx=Jxz. Since Jxx�Jyy �0, v↑↓ favors staggered
Ising-type ordering along the x direction while v0 favors a
uniform polarization along the x direction and, consequently,
a staggered Ising-type ordering along the y direction. In other
words, the interband hybridization can stabilize an EQDW or
a SCHP depending on the ratio between the on-site and in-
tersite hybridization amplitudes.

We introduce now the mean-field variational states and
the corresponding energies for the three order parameters
that we introduced in the previous section.

�i� SOO. This phase has a staggered spin component along
the z direction, and a uniform component along the x direc-
tion that can be induced by the on-site hybridization term v0,

�S j��1
= S�sin �1,0,cos �1eiQRj� , �18�

E0
SOO = − DNS2Jzz cos2 �1 + DNS2Jxx sin2 �1 + 2v0SN sin �1

+ DNC . �19�

�ii� SCHP. This phase has a staggered spin component
along the y direction and uniform polarizations along the x
and z directions,

�S j��1,�2
= S�sin �1 cos �2,eiQRj sin �1 sin �2,cos �1� ,

�20�
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E0
SCHP = DNS2��Jxx + Jyy�cos2 �2�1 − cos2 �1� − Jyy

+ �Jyy + Jzz�cos2 �1 + 2Jxz sin �1 cos �1 cos �2�

+ DNC + NSB cos �1 + 2NSv0 sin �1 cos �2.

�21�

�iii� EQDW. In this case the staggered spin component is
aligned along the x direction and there is a uniform compo-
nent along the z direction induced by B �the y component
vanishes�,

�S j��1
= S�eiQRj sin �1,0,cos �1� , �22�

E0
EQDW = DNC + NBS cos �1 − DNJxxS

2 sin2 �1

+ DNJzzS
2 cos2 �1. �23�

In all cases we have D=2, Q= �� ,��, and S=1 /2. By
minimizing the respective energies with respect to �1 and �2,
we determine the quantum phase diagram as a function of
the band-structure parameters.

Figure 1�a� shows the effect of a finite intersite hybridiza-
tion amplitude, v↑↓, on the quantum phase diagram of the
EFKM. The intersite hybridization stabilizes the EQDW
relative to the SCHP. On the other hand, the EQDW is also
favored relative to the SOO because v↑↓ decreases the value
of Jzz and simultaneously increases the value of Jxx �see Eqs.
�11� and �13��. Figure 1�b� illustrates the effect of a finite
on-site hybridization. In this case, the SCHP is favored rela-
tive to the EQDW. In contrast to v↑↓, v0 does not change the
transition point between the SCHP and the SOO. The simple
reason is that v0 does not affect the exchange constants. It
just generates an effective pseudomagnetic field along the x
axis that leads to a finite canting angle in both phases. Figure
1�c� shows the phase diagram as a function of v0 and v↑↓ for
a large enough value of B=0.5 and same parity orbitals.
Again, we can see that a finite on-site hybridization v0
strengthens the SCHP while the intersite hybridization v↑↓
stabilizes the EQDW. Within our simple mean-field approxi-
mation the boundary between these two phases is a straight
line.

V. WEAK-COUPLING REGIME

It has been shown in Ref. 18 that the mean-field ground-
state phase diagram of the 2D EFKM agrees almost perfectly
with the one obtained by a constrained path Monte Carlo
technique, even in the intermediate coupling regime. This
agreement motivates us to perform a Hartree-Fock decou-
pling of the HEFKM to explore the quantum phase diagram
for small U / 	t�	.

The weak-coupling analysis requires to express the rel-
evant order parameters in momentum space. In particular, the
Fourier components of �S j

x� and �S j
y� can be represented as a

complex number,

�Q = 	�Q	ei� =
U

N
�
k

�ck+Q↑
† ck↓� �24�

=
U

N
�

j

eiQRj��S j
x� + i�S j

y�� �25�

=
U
N

��SQ
x � + i�SQ

y �� , �26�

where

ck�
† =

1
N

�
j

eik·Rjcj�
† , �27�

(a)

(b)

(c)

FIG. 1. �Color online� Ground-state phase diagram of the 2D
EFKM in the strong-coupling regime. Band-structure parameters
are �↓=0.0, t↑=1.0, and U=10. Left-hand side diagrams �in panels
�a� and �b�� give results for the nonhybridized EFKM �v0=0 and
v↑↓=0� while right-hand side diagrams show the dependence on the
�a� intersite hybridization v↑↓ and �b� on-site hybridization v0 for
�↑=0.15. Panel �c� gives the stability region of the staggered chiral
phase and the electric quadrupole density wave in dependence on v0

and v↑↓ for �↑=0.5, t↓=0.5.
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Sk
	 =

1
N

�
j

eik·RjS j
	. �28�

The ordering wave vector Q determines the modulation of
the real-space order parameter. According to our strong-
coupling analysis, we have Q= �� ,�� for orbitals with the
same parity and Q= �0,0� for orbitals with opposite parity.
Again, the U�1� invariance of the EFKM �v�=0� implies that
the energy does not depend on �. Consequently, there is an
infinite number of ground-states with �Q�0 that results
from the spontaneous U�1� symmetry breaking of the EFKM
�excitonic condensate�. A finite interband hybridization
�v��0� removes the continuous U�1� symmetry and lifts the
� degeneracy of the HEFKM ground-state.

For orbitals with opposite parity, the hybridization in mo-
mentum space takes the form vk=2iv↑↓�sin kx+sin ky� and
the EFE state has a lower energy than the CHP. This is in
agreement with the result for the FKM extended by a �small�
intersite hybridization in Ref. 14. Therefore, from now on we
will focus only on the equal parity case. The Hartree-Fock
decoupling suggested by Eq. �24� gives

Hwc = �
k,�

�̄k�ck�
† ck� + �

k,�
vkck�

† ck−� − �
k

�Qck↓
† ck+Q↑

− �
k

�Q
� ck+Q↑

† ck↓ �29�

with

�̄k� = �� + Un−� + 2t��cos kx + cos ky� , �30�

vk = v0 + 2v↑↓�cos kx + cos ky� , �31�

n� =
1

N
�
k

�ck�
† ck�� , �32�

�Q =
U

N
�
k

�ck+Q↑
† ck↓� , �33�

�Q
� =

U

N
�
k

�ck↓
† ck+Q↑� . �34�

The mean-field Hamiltonian �29� can be easily diagonalized
by the canonical transformation29

Ck,m = uk,mck↑ + vk,mck↓ + ũk,mck+Q↑ + ṽk,mck+Q↓, �35�

where m=1,2 ,3 ,4. The coefficients are solutions of the
associated Bogoliubov de Gennes equations, Hk

wc�k,m
=Ek,m�k,m, with

Hk
wc =�

�̄k↑ vk 0 − �Q
�

vk �̄k↓ − �Q 0

0 − �Q
� �̄k+Q↑ vk+Q

− �Q 0 vk+Q �̄k+Q↓

� �36�

and �k,m= �uk,m ,vk,m , ũk,m , ṽk,m�T. The energy per site results
as

E0
wc

N
=

1

N
�
k,m

�Ek,mf�Ek,m� − Un↑n↓ +
1

U
	�Q	2, �37�

where f�Ek,m� is the Fermi function containing the new qua-
siparticle energies Ek,m and the prime denotes that the k sum-
mation extends over the magnetic Brillouin zone only. The
chemical potential � is determined by the condition

1 =
1

N
�
k,m

�f�Ek,m� . �38�

Next we consider the mean-field decoupling that leads to
SOO. In this case, we introduce the possibility of a periodic
modulation in the electronic density with independent ampli-
tudes for each spin polarization,

�ni�� = n� + �� cos�QRi� �39�

with

�� =
1

N
�
k

�ck�
† ck+Q�� . �40�

The associated Bogoliubov de Gennes equations are
Hk

SOO�k,m=Ek,m
SOO�k,m, with

Hk
SOO =�

�̄k↑ vk U�↑ 0

vk �̄k↓ 0 U�↓

U�↑ 0 �̄k+Q↑ vk+Q

0 U�↓ vk+Q �̄k+Q↓

� . �41�

The SOO order parameter becomes

�SOO =
�↑ − �↓

2
. �42�

For asymmetric bands, t↑� t↓, the presence of a nonzero
SOO leads to a secondary charge-density-wave �CDW� or-
der, whose order parameter is given by

�CDW =
�↑ + �↓

2
. �43�

This secondary CDW provides a simple way of detecting the
SOO in real materials. The mean-field energy per site that
results from such a kind of SOO is

E0
SOO

N
=

1

N
�
k,m

�Ek,m
SOOf�Ek,m

SOO� − Un↑n↓ − U�↓�↑. �44�

By solving the self-consistency Eqs. �33� and �40�, and
comparing the corresponding mean-field energies given by
Eqs. �37� and �44�, we compute the ground-state phase dia-
gram.

Figure 2 is the weak-coupling counterpart of Fig. 1. Like
for the strong-coupling regime, Fig. 2�a� shows that an in-
creasing value of v↑↓ narrows the SOO phase while the re-
gion of the EQDW phase is enlarged. On the other hand, the
on-site hybridization v0 favors the SCHP relative to the
EQDW and it does not have a noticeable effect on the tran-
sition line between the SOO and the SCHP �see Fig. 2�b��.
This also coincides with the strong-coupling results. Figure
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2�c� shows the stability regions of the EQDW and SCHP as
a function of the hybridization amplitudes for a large enough
	�↑−�↓	=0.5. Qualitatively, the result of our Hartree-Fock
approach is similar to the one obtained from the strong-
coupling analysis �see Fig. 1�c��. However, a more quantita-
tive analysis shows that the area of stability for the SCHP is
reduced relative the strong-coupling result. A large Coulomb
repulsion inhibits hopping processes and consequently re-
duces the influence of the intersite hybridization v↑↓ relative
to the effect of the on-site hybridization v0.

VI. CONCLUSIONS

The Hamiltonian that we considered in this work is a very
simple extension of the Falicov-Kimball model. In spite of

its simplicity, we have shown that this model leads to a very
rich quantum phase diagram that contains all the possible
local order parameters �three different components of the lo-
cal spin S j� considered in Sec. III. The ordering wave vector
Q is selected by the nesting property of the noninteracting
Fermi surface in the weak-coupling limit and by the antifer-
romagnetic nature of the exchange interactions on a bipartite
lattice in the strong-coupling limit. Most notably, the stability
of the different broken symmetry states is very sensitive to a
few band-structure parameters. According to these results, it
is necessary to have very accurate information about the
band-structure properties near the Fermi energy to predict the
correct ordered state. In particular, if the two orbitals have
different angular momentum �like s and d orbitals�, the
SCHP may remain hidden to most of the experimental
probes. The simple reason is that the spontaneous current-
density distribution given by Eq. �9� has no net magnetic
moment. Consequently, this phase can only be detected by
using an experimental probe that couples to the lowest non-
zero multipole of the current-density distribution. The SCHP
becomes stable above a critical value of the on-site hybrid-
ization as long as the diagonal energy difference between the
two orbitals 	�c−� f	 is also larger than a minimal value.

Although all the calculations of this work were done for
D=2, we do not expect any qualitative change for D�2. The
obtained consistency between the weak- and the strong-
coupling approaches suggests that our results are robust. In
particular, the absence of geometric frustration in the strong-
coupling regime, whose weak-coupling counterpart is the
nesting property of the Fermi surface, facilitates the search
for the broken symmetry state that minimizes the energy for
each set of Hamiltonian parameters. For orbitals with oppo-
site parity under spatial inversion, we confirmed that the
ferroelectric phase has always a lower energy than the chiral
phase. For orbitals with the same parity, we found that the
stabilization of the electric quadrupole density wave or the
staggered chiral phase depends strongly on the dominant in-
terband hybridization. The on-site hybridization, that is only
allowed when the two orbitals belong to different ions, fa-
vors the staggered chiral phase while a nearest-neighbor in-
terband hybridization favors the electric quadrupole density
wave.
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FIG. 2. �Color online� Ground-state phase diagram of the 2D
EFKM in the weak-coupling regime. Band-structure parameters are
�↓=0.0, t↑=1.0, and U=2. Left-hand side diagrams �in panels �a�
and �b�� give results for the nonhybridized EFKM �v0=0 and v↑↓
=0� while right-hand side diagrams show the dependence on the �a�
intersite hybridization v↑↓ and �b� on-site hybridization v0 for �↑
=0.15. Panel �c� gives the stability region of the staggered chiral
phase and the electric quadrupole density wave in dependence on v0

and v↑↓ for �↑=0.5, t↓=0.5.
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