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Abstract

We discuss the nature of the different ground states of the half-filled Holstein model of spinless fermions in 1D. In the

metallic regime we determine the renormalised effective coupling constant and the velocity of the charge excitations by a

density-matrix renormalisation group (DMRG) finite-size scaling approach. At low (high) phonon frequencies the

Luttinger liquid is characterised by an attractive (repulsive) effective interaction. In the charge-density wave Peierls-

distorted state the charge structure factor scales to a finite value indicating long-range order.
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The challenge of understanding quantum phase
transitions in novel quasi-1D materials has stimu-
lated intense work on microscopic models of
interacting electrons and phonons such as the
Holstein model of spinless fermions (HMSF)
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The HMSF describes tight-binding band electrons
coupled locally to harmonic dispersionless optical
phonons, where t, o0; and g denote the electronic
transfer amplitude, the phonon frequency, and
the electron–phonon (EP) coupling constant,
respectively.
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Fig. 1. Finite-size scaling of the charge gap DchðNÞ and the

ground-state energy E0ðNÞ: Exact diagonalisation (ED) data is

included for comparison.

Table 1

LL parameters at small and large phonon frequencies

g2 o0=t ¼ 0:1 o0=t ¼ 10:0

Kr ur=2 Kr ur=2

0.6 1.031 	 1 	 1 0.617

2.0 1.055 0.995 0.949 0.146

4.0 1.091 0.963 0.651 0.028

Fig. 2. Scaling of the charge structure factor ScðpÞ using p
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Despite its simplicity the HMSF is not exactly
solvable and a wide range of numerical methods
has been applied in the past to map out the
ground-state phase diagram in the g–o0 plane, in
particular for the half-filled band case
(Nel ¼ N=2). There, the model most likely exhibits
a transition from a Luttinger liquid (LL) to a
charge-density wave (CDW) ground state above a
critical EP coupling strength gcðo0Þ40 [1].
In this contribution we present large-scale

DMRG calculations, providing unbiased results
for the (non-universal) LL parameters ur; Kr; and
the staggered charge structure factor ScðpÞ:
To leading order, the charge velocity ur and the

correlation exponent Kr might be obtained from a
finite-size scaling of the ground-state energy of a
finite system E0ðNÞ with N sites

e0ð1Þ � ðE0ðNÞ=NÞ ¼ ðp=3Þður=2Þ=N2 (2)

(e0ð1Þ denotes the bulk ground-state energy
density) and the charge excitation gap

DchðNÞ ¼ E
ð�1Þ
0 ðNÞ � E0ðNÞ

¼ pður=2Þ=ðNKrÞ ð3Þ

(here E�1
0 ðNÞ is the ground-state energy with �1

fermions away from half-filling). The LL scaling
relations (2) and (3) were derived for the pure
electronic spinless fermion model only [2].
eriodic (PBC) and open (OBC) boundary conditions.
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Fig. 3. Phase diagram of the 1D half-filled spinless fermion

Holstein model. Here a ¼ o0=t; �p ¼ o0g2; and l ¼ �p=2t:
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Fig. 1 demonstrates, exemplarily for the adia-
batic regime, that they also hold for the case that a
finite EP coupling is included. The resulting LL
parameters are given in Table 1. Most notably,
around o0=t 	 1; the LL phase splits in two
different regimes: For small phonon frequencies
the effective fermion–fermion interaction is attrac-

tive, while it is repulsive for large frequencies. In
the latter region the kinetic energy is strongly
reduced and the charge carriers behave like (small)
polarons. In between, there is a transition line
Kr ¼ 1; where the LL is made up of (almost) non-
interacting particles. The LL scaling breaks down
just at gcðo=tÞ; i.e. at the transition to the CDW
state. We found g2cðo=t ¼ 0:1Þ ’ 7:84 and
g2cðo=t ¼ 10Þ ’ 4:41 [3].
Fig. 2 proves the existence of the long-range

ordered CDW phase above gc: Here the charge
structure factor

ScðpÞ ¼
1

N2

X

i;j

ð�1Þjhðni �
1
2
Þðniþj �

1
2
Þi (4)

unambiguously scales to a finite value in the
thermodynamic limit (N ! 1). Simultaneously
Dchð1Þ acquires a finite value. In contrast we have
ScðpÞ ! 0 in the metallic regime (gogc). The
CDW for strong EP coupling is connected to a
Peierls distortion of the lattice, and can be
classified as traditional band insulator and bipo-
laronic insulator in the strong-EP coupling adia-
batic and anti-adiabatic regimes, respectively.
The emerging physical picture can be sum-

marised in the schematic phase diagram shown in
Fig. 3. In the adiabatic limit (o0 ! 0) any finite
EP coupling causes a Peierls distortion. In the anti-
adiabatic strong EP coupling limit (o0 ! 1), the
HMSF can be mapped perturbatively onto the
XXZ model and the metal–insulator transition is
consistent with a Kosterlitz–Thouless transition at
g2cð1Þ ’ 4:88:
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