

Available online at www.sciencedirect.com

Physica B 359-361 (2005) 699-701

www.elsevier.com/locate/physb

Luttinger liquid versus charge density wave behaviour in the one-dimensional spinless fermion Holstein model

H. Fehske^{a,*}, G. Wellein^b, G. Hager^b, A. Weiße^c, K.W. Becker^d, A.R. Bishop^e

^aInstitut für Physik, Universität Greifswald, D-17487 Greifswald, Germany ^bRegionales Rechenzentrum Erlangen, Universität Erlangen-Nürnberg, Germany ^cSchool of Physics, The University of New South Wales, Sydney, NSW 2052, Australia ^dInstitut für Theoretische Physik, TU Dresden, D-01062 Dresden, Germany ^cTheoretical Division, Los Alamos National Laboratory, Los Alamos, NM 87545, USA

Abstract

We discuss the nature of the different ground states of the half-filled Holstein model of spinless fermions in 1D. In the metallic regime we determine the renormalised effective coupling constant and the velocity of the charge excitations by a density-matrix renormalisation group (DMRG) finite-size scaling approach. At low (high) phonon frequencies the Luttinger liquid is characterised by an attractive (repulsive) effective interaction. In the charge-density wave Peierls-distorted state the charge structure factor scales to a finite value indicating long-range order. © 2005 Elsevier B.V. All rights reserved.

PACS: 71.10.Hf; 71.38.-k; 71.45.Lr

Keywords: Non-Fermi liquid behaviour; Quantum phase transition; Mott-Hubbard systems

The challenge of understanding quantum phase transitions in novel quasi-1D materials has stimulated intense work on microscopic models of interacting electrons and phonons such as the Holstein model of spinless fermions (HMSF)

*Corresponding author. Tel.: +49 3834 86 4760; fax: +49 3834 86 4701.

$$H = -t \sum_{i} (c_{i}^{\dagger} c_{i+1} + c_{i+1}^{\dagger} c_{i}) + \omega_{0} \sum_{i} b_{i}^{\dagger} b_{i} -g \omega_{0} \sum_{i} (b_{i}^{\dagger} + b_{i})(n_{i} - \frac{1}{2}).$$
(1)

The HMSF describes tight-binding band electrons coupled locally to harmonic dispersionless optical phonons, where t, ω_0 , and g denote the electronic transfer amplitude, the phonon frequency, and the electron–phonon (EP) coupling constant, respectively.

E-mail address: fehske@physik.uni-greifswald.de (H. Fehske).

^{0921-4526/\$ -} see front matter \odot 2005 Elsevier B.V. All rights reserved. doi:10.1016/j.physb.2005.01.198

Fig. 1. Finite-size scaling of the charge gap $\Delta_{ch}(N)$ and the ground-state energy $E_0(N)$. Exact diagonalisation (ED) data is included for comparison.

Table 1 LL parameters at small and large phonon frequencies

g^2	$\omega_0/t = 0.1$		$\omega_0/t = 10.0$	
	$K_ ho$	$u_{ ho}/2$	$K_ ho$	$u_{ ho}/2$
0.6	1.031	~ 1	~ 1	0.617
2.0	1.055	0.995	0.949	0.146
4.0	1.091	0.963	0.651	0.028

Despite its simplicity the HMSF is not exactly solvable and a wide range of numerical methods has been applied in the past to map out the ground-state phase diagram in the $g-\omega_0$ plane, in particular for the half-filled band case $(N_{\rm el} = N/2)$. There, the model most likely exhibits a transition from a Luttinger liquid (LL) to a charge-density wave (CDW) ground state above a critical EP coupling strength $g_c(\omega_0) > 0$ [1].

In this contribution we present large-scale DMRG calculations, providing unbiased results for the (non-universal) LL parameters u_{ρ} , K_{ρ} , and the staggered charge structure factor $S_{c}(\pi)$.

To leading order, the charge velocity u_{ρ} and the correlation exponent K_{ρ} might be obtained from a finite-size scaling of the ground-state energy of a finite system $E_0(N)$ with N sites

$$\varepsilon_0(\infty) - (E_0(N)/N) = (\pi/3)(u_\rho/2)/N^2$$
(2)

 $(\varepsilon_0(\infty))$ denotes the bulk ground-state energy density) and the charge excitation gap

$$\begin{aligned} \Delta_{\rm ch}(N) &= E_0^{(\pm 1)}(N) - E_0(N) \\ &= \pi (u_{\rho}/2)/(NK_{\rho}) \end{aligned} \tag{3}$$

(here $E_0^{\pm 1}(N)$ is the ground-state energy with ± 1 fermions away from half-filling). The LL scaling relations (2) and (3) were derived for the pure electronic spinless fermion model only [2].

Fig. 2. Scaling of the charge structure factor $S_c(\pi)$ using periodic (PBC) and open (OBC) boundary conditions.

Fig. 3. Phase diagram of the 1D half-filled spinless fermion Holstein model. Here $\alpha = \omega_0/t$, $\varepsilon_p = \omega_0 g^2$, and $\lambda = \varepsilon_p/2t$.

Fig. 1 demonstrates, exemplarily for the adiabatic regime, that they also hold for the case that a finite EP coupling is included. The resulting LL parameters are given in Table 1. Most notably, around $\omega_0/t \sim 1$, the LL phase splits in two different regimes: For small phonon frequencies the effective fermion-fermion interaction is *attrac*tive, while it is repulsive for large frequencies. In the latter region the kinetic energy is strongly reduced and the charge carriers behave like (small) polarons. In between, there is a transition line $K_{\rho} = 1$, where the LL is made up of (almost) noninteracting particles. The LL scaling breaks down just at $g_c(\omega/t)$, i.e. at the transition to the CDW state. We found $g_c^2(\omega/t = 0.1) \simeq 7.84$ and $g_c^2(\omega/t = 10) \simeq 4.41$ [3].

Fig. 2 proves the existence of the long-range ordered CDW phase above g_c . Here the charge

structure factor

$$S_{\rm c}(\pi) = \frac{1}{N^2} \sum_{i,j} (-1)^j \langle (n_i - \frac{1}{2})(n_{i+j} - \frac{1}{2}) \rangle \tag{4}$$

unambiguously scales to a finite value in the thermodynamic limit $(N \to \infty)$. Simultaneously $\Delta_{ch}(\infty)$ acquires a finite value. In contrast we have $S_c(\pi) \to 0$ in the metallic regime $(g < g_c)$. The CDW for strong EP coupling is connected to a Peierls distortion of the lattice, and can be classified as traditional band insulator and bipolaronic insulator in the strong-EP coupling adiabatic and anti-adiabatic regimes, respectively.

The emerging physical picture can be summarised in the schematic phase diagram shown in Fig. 3. In the adiabatic limit ($\omega_0 \rightarrow 0$) any finite EP coupling causes a Peierls distortion. In the antiadiabatic strong EP coupling limit ($\omega_0 \rightarrow \infty$), the HMSF can be mapped perturbatively onto the XXZ model and the metal-insulator transition is consistent with a Kosterlitz-Thouless transition at $g_c^2(\infty) \simeq 4.88$.

Work was supported by DFG under SPP 1073 and SFB 463, KONWIHR, HLRN Berlin, and the US DOE.

References

- See, e.g., R.B. Bursill, R.H. McKenzie, C.J. Hamer, Phys. Rev. Lett. 80 (1998) 5607;
 S. Sykora, A. Hübsch, K.W. Becker, G. Wellein, H. Fehske, Phys. Rev. B 71 (2005) 045112, and references therein.
- J.L. Cardy, J. Phys. A 17 (1984) L385;
 J. Voit, Rep. Prog. Phys. 58 (1995) 977.
- [3] H. Fehske, M. Holicki, A. Weiße, Adv. Solid State Phys. 40 (2000) 235.