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Abstract

We discuss the nature of the different ground states of the half-filled Holstein model of spinless fermions in 1D. In the
metallic regime we determine the renormalised effective coupling constant and the velocity of the charge excitations by a
density-matrix renormalisation group (DMRG) finite-size scaling approach. At low (high) phonon frequencies the
Luttinger liquid is characterised by an attractive (repulsive) effective interaction. In the charge-density wave Peierls-
distorted state the charge structure factor scales to a finite value indicating long-range order.
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The challenge of understanding quantum phase
transitions in novel quasi-1D materials has stimu-
lated intense work on microscopic models of
interacting electrons and phonons such as the
Holstein model of spinless fermions (HMSF)
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The HMSF describes tight-binding band electrons
coupled locally to harmonic dispersionless optical
phonons, where ¢, wy, and g denote the electronic
transfer amplitude, the phonon frequency, and
the electron—phonon (EP) coupling constant,
respectively.
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Fig. 1. Finite-size scaling of the charge gap Ay (N) and the
ground-state energy Eo(N). Exact diagonalisation (ED) data is
included for comparison.

Table 1
LL parameters at small and large phonon frequencies

Despite its simplicity the HMSF is not exactly
solvable and a wide range of numerical methods
has been applied in the past to map out the
ground-state phase diagram in the g—w, plane, in
particular  for the half-filled band case
(N¢ = N/2). There, the model most likely exhibits
a transition from a Luttinger liquid (LL) to a
charge-density wave (CDW) ground state above a
critical EP coupling strength g.(wo) >0 [1].

In this contribution we present large-scale
DMRG calculations, providing unbiased results
for the (non-universal) LL parameters u,, K,, and
the staggered charge structure factor S¢(n).

To leading order, the charge velocity u, and the
correlation exponent K, might be obtained from a
finite-size scaling of the ground-state energy of a
finite system Ey(N) with N sites

£0(00) — (Eo(N)/N) = (n/3)(u,/2)/N? 2

(eo(00) denotes the bulk ground-state energy
density) and the charge excitation gap

g o/t =0.1 wo/t = 10.0
_ pED A
K, 02 K, 02 An(N) = E5(N) — Eo(N)
= n(u,/2)/(NK,) (3)
0.6 1.031 ~1 ~1 0.617
2.0 1.055 0.995 0.949 0.146 (here Eoil(N) is the ground-state energy with +1
4.0 1.091 0.963 0.651 0.028 fermions away from half-filling). The LL scaling
relations (2) and (3) were derived for the pure
electronic spinless fermion model only [2].
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Fig. 2. Scaling of the charge structure factor S¢(n) using periodic (PBC) and open (OBC) boundary conditions.
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Fig. 3. Phase diagram of the 1D half-filled spinless fermion
Holstein model. Here o = wy/t, &, = wog?, and 4 = ¢,/2t.

Fig. 1 demonstrates, exemplarily for the adia-
batic regime, that they also hold for the case that a
finite EP coupling is included. The resulting LL
parameters are given in Table 1. Most notably,
around g/t ~ 1, the LL phase splits in two
different regimes: For small phonon frequencies
the effective fermion—fermion interaction is attrac-
tive, while it is repulsive for large frequencies. In
the latter region the kinetic energy is strongly
reduced and the charge carriers behave like (small)
polarons. In between, there is a transition line
K, =1, where the LL is made up of (almost) non-
interacting particles. The LL scaling breaks down
just at g.(w/1), i.e. at the transition to the CDW
state. We found g¢*(w/t=0.1)~7.84 and
g (w/t = 10) ~ 4.41 [3].

Fig. 2 proves the existence of the long-range
ordered CDW phase above g.. Here the charge

structure factor
1 .
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ij

unambiguously scales to a finite value in the
thermodynamic limit (N — o0). Simultaneously
Acn(00) acquires a finite value. In contrast we have
S¢(mr) - 0 in the metallic regime (g<g.). The
CDW for strong EP coupling is connected to a
Peierls distortion of the lattice, and can be
classified as traditional band insulator and bipo-
laronic insulator in the strong-EP coupling adia-
batic and anti-adiabatic regimes, respectively.

The emerging physical picture can be sum-
marised in the schematic phase diagram shown in
Fig. 3. In the adiabatic limit (wy — 0) any finite
EP coupling causes a Peierls distortion. In the anti-
adiabatic strong EP coupling limit (wg — 00), the
HMSF can be mapped perturbatively onto the
XXZ model and the metal-insulator transition is
consistent with a Kosterlitz—Thouless transition at
g2(00) =~ 4.88.
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