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We discuss the existence of a nontrivial topological phase in one-dimensional interacting systems
described by the extended Bose-Hubbard model with a mean filling of one boson per site. Performing
large-scale density-matrix renormalization group calculations we show that the presence of nearest-
neighbor repulsion enriches the ground-state phase diagram of the paradigmatic Bose-Hubbard model by
stabilizing a novel gapped insulating state, the so-called Haldane insulator, which, embedded into
superfluid, Mott insulator, and density wave phases, is protected by the lattice inversion symmetry. The
quantum phase transitions between the different insulating phases were determined from the central charge
via the von Neumann entropy. The Haldane phase reveals a characteristic fourfold degeneracy of the
entanglement spectrum. We finally demonstrate that the intensity maximum of the dynamical charge
structure factor, accessible by Bragg spectroscopy, features the gapped dispersion known from the spin-1
Heisenberg chain.
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A quarter-century after Haldane’s conjecture of an
appearance of finite gap in the integer-spin chain [1], the
so-called Haldane phase protected by the lattice inversion
symmetry attracts renewed attention from a topological
point of view. Such a topological protected state, charac-
terized by symmetries and a finite bulk gap, is termed now
as a symmetry-protected topological (SPT) ordered phase
[2,3]. In higher dimensions, the so-called Kane-Mele
topological band insulator of noninteracting fermions
[4,5] exhibits a SPT state protected by Uð1Þ and time-
reversal symmetries. Since particles in real materials
normally interact, it is not sufficient to study SPT order
for non-interacting systems. To analyze SPT states in
interacting systems two main approaches have been pro-
posed. The first is based on the definition of appropriate
topological invariants within a Green function scheme [6].
It has been successfully applied to the one-dimensional
Peierls-Hubbard model [7,8]. The second uses the entan-
glement spectrum as a fingerprint of topological order [9].
Here the lowest entanglement level reflects the degree of
degeneracy corresponding to symmetries and the edge
states of the system. This has been worked out for various
spin chains [3,10,11].
Interestingly a hidden SPT phase was also found in

interacting boson systems with long-range repulsion [12].
This phase resembles the Haldane gapped phase of the
quantum spin-1 Heisenberg chain. Indeed, assuming that
the site occupation of an one-dimensional extended Bose-
Hubbard model (EBHM) with nearest-neighbor interaction
is restricted to nj ¼ 0, 1 or 2, the system can be described
by an effective spin-1 model with Szj ¼ nj − ρ for a mean
boson filling factor ρ ¼ 1. The Haldane insulator (HI) then
appears between the conventional Mott insulator (MI) and
the density wave (DW) phases at intermediate couplings

[12,13]. Field theory predicts the MI-HI transition to be in
the Luttinger liquid universality class with central charge
c ¼ 1, whereas the HI-DW transition belongs to the Ising
universality class with c ¼ 1=2 [13]. Very recent quantum
Monte Carlo simulations [14] reveal in addition a super-
solid phase competing with the HI.
In this work, we focus on the characterization of the

EBHM’s ground-state and spectral properties from an
entanglement point of view. Using the (dynamical) den-
sity-matrix renormalization group (DMRG) technique
[15,16], we show that the lowest entanglement level in
the nontrivial topological HI phase is fourfold degenerate.
The universality classes of the MI-HI and HI-DW tran-
sitions are determined from the central charge in accor-
dance with what is obtained from field theory. Most notably
we demonstrate that the dynamical charge structure factor
can be used to unambiguously discriminate the HI from
the MI and DW phases.
The Hamiltonian of the EBHM is defined as

Ĥ ¼ −t
X

j

ðb̂†j b̂jþ1 þ b̂jb̂
†
jþ1Þ þU

X

j

n̂jðn̂j − 1Þ=2

þ V
X

j

n̂jn̂jþ1; ð1Þ

where b̂†j , b̂j, and n̂j ¼ b̂†j b̂j are, respectively, the boson
creation, annihilation, and number operators at the lattice
site j. The nearest-neighbor boson transfer amplitude is
given by t; U and V parametrize the Coulomb repulsions
between bosons resting at the same and neighboring sites.
While t causes the bosons to delocalize, promoting a
superfluid (SF) phase at weak interactions, U ðVÞ tends
to stabilize a MI (DW) when the interaction dominates over
the kinetic energy scale set by t.
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In the framework of the DMRG the entanglement
properties of the EBHM can be analyzed as follows.
Consider the reduced density matrix ρl ¼ TrL−l½ρ� of a
block of length l out of a periodic system of size L. Then
the bipartite entanglement spectrum fξαg is defined as
those of a fictitious Hamiltonian H̄ defined via ρl ¼ e−H̄.
As a consequence the ξα can be extracted from the weights
λα of the reduced density matrix ρl by ξα ¼ −2 ln λα.
Adding up, along the calculations, the λα, we have
direct access to the von Neumann entropy, SLðlÞ ¼
−Trl½ρl ln ρl�. On the other hand, from conformal field
theory [17] one has SLðlÞ ¼ ðc=3Þ ln ½ðL=πÞ sin ðπl=LÞ� þ
s1 with the nonuniversal constant s1. Thus we can easily
determine the central charge c by DMRG. Since the most
precise data for SLðlÞ were obtained when the length l of
the sub-block equals half the system size L, the central
charge should be determined from the relation [18]

c�ðLÞ ¼ 3½SLðL=2 − 1Þ − SLðL=2Þ�
ln½cosðπ=LÞ� ; ð2Þ

rather than directly using the above expression for SLðlÞ.
In contrast to hitherto existing open boundary DMRG

studies of the EBHM [12,13,19] we use periodic boundary
conditions (PBCs). As shown for the regular Bose-Hubbard
model this is advantageous calculating the central charge
[20,21]. Beyond that we benefit from the fact that no
artificial on-site potentials at the edges will affect our
results. To reach the same system sizes as with open
boundary conditions (OBCs), we limit the number of
bosons per site. Throughout this work we use nb ¼ 2;
here the EBHM corresponds to an effective spin-1
Heisenberg model. We have convinced ourselves that at
sufficiently large U the boson truncation does not alter
qualitatively the results presented in the following (solely,
in the weak coupling regime, the extension of the SF phase
is somewhat underestimated). Let us finally note that we
keep up to m ¼ 2400 states in the DMRG runs, so that the
discarded weight is typically smaller than 1 × 10−8. For the
dynamical DMRG calculations we take m ¼ 800 states to
compute the ground state during the first five DMRG
sweeps, and afterwards use 400 states evaluating the
dynamical properties.
As stated above the ground-state phase diagram of the

EBHM (1) with nb ¼ 2 exhibits three differing insulator
phases, as well as a superfluid state at weak interactions
U=t, V=t. The stability regions of the various phases are
pinpointed by Fig. 1. Let us emphasize that in the
intermediate-coupling region (3≲ U ≲ 8), the central
charge is best suited for detecting the MI-HI (HI-DW)
quantum phase transition since the system becomes critical
at the transition points with c ¼ 1 (1=2).
Figure 2(a) illustrates the behavior of the central charge

c� obtained numerically as a function of V=t at fixed
U=t ¼ 5. With increasing system size L two sharp peaks

develop, indicating the MI-HI and HI-DW transition points.
For L ¼ 128, we found c� ≃ 0.999 in the former case and
c� ≃ 0.494 in the latter case; i.e., the numerical error,
jc�ðLÞ − cj=c, is about 1% if compared with the field
theoretical predictions. Since the positions of the peaks
only weakly depend on the system size, the transition
points can be determined by extrapolating the values of the
critical VðLÞ to the thermodynamic limit L → ∞. MI-HI
transition points are also extracted from the level spectros-
copy of two lowest-lying energies with antiperiodic boun-

dary conditions (APBCs), b̂ð†ÞLþ1 → −b̂ð†Þ1 . This equates to
the twisted boundary methods [22] with the spin operators
ŜxLþ1 → −Ŝx1 and ŜyLþ1 → −Ŝy1 applied to the spin-1 XXZ
chain [23], see also Ref. [24]. The obtained transition
points can be linearly extrapolated to the thermodynamic
limit as in the inset of Fig. 2(a), showing a perfect
agreement with the critical points obtained in the main
panel.
The excitation gaps behave differently in various insu-

lating phases [12,13]: While the single-particle gap Δc ¼
E0ðN þ 1Þ þ E0ðN − 1Þ − 2E0ðNÞ is finite in all three
insulator phases, except for the MI-HI transition point,
the neutral gap Δn ¼ E1ðNÞ − E0ðNÞ closes both at the
MI-HI and HI-DW transitions [E0ðNÞ and E1ðNÞ denote
the energies of the ground state and first excited state of
the N-particle system, respectively]. This is corroborated
by Fig. 2(b). A similar behavior of the neutral gap has been
observed for the SPT phases of spin-1=2 ladder systems
[25]. Note that the phase boundaries obtained by our PBC
DMRG calculation at intermediate and strong couplings
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FIG. 1 (color online). DMRG phase diagram of the one-
dimensional constrained extended Bose-Hubbard model with
nb ¼ 2 and ρ ¼ 1. Shown are the Mott insulator (MI), Haldane
insulator (HI), density wave (DW), and superfluid (SF) phases.
The MI-HI (squares) and HI-DW (circles) transition points are
determined via the central charge c ¼ 1 and c ¼ 1=2, respec-
tively, which can be extracted from the von Neumann entropy
[cf. Fig. 2(b)]. MI-HI transition points are confirmed by a finite-
size scaling of the two lowest energy levels with APBCs.
Relaxing the boson constraint the SF region extends.
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basically agree with very recent DMRG data for OBCs
[19,26]. In the weak-coupling regime, on the other hand,
our phase diagram differs from former studies due to the
nb ¼ 2 restraint. Accordingly the MI-SF transition at
V ¼ 0 occurs at a smaller value, U ≃ 1.555t, if compared
to the critical U=t derived from the Tomonaga-Luttinger
liquid parameter [27]. The appearance of the SF phase,
which can be understood as a Luttinger liquid with c ¼ 1
[28], together with strong finite-size effects prevents using
c� for detecting the MI-HI transition in this regime.
Otherwise, as shown by Fig. 2(c), the HI-DW Ising
transition can still be determined from c�, even for U ¼ 0.
On these grounds, discussing the entanglement proper-

ties of the SPT state, we consider the intermediate-coupling
region hereafter. Calculating the entanglement spectrum ξα
we divide the system in halves. Then, using DMRG with

PBCs, one of the block with L=2 sites possesses two edges
(rather than a single edge in the semi-infinite chain used by
the infinite-time evolving block-decimation algorithm [3]).
In the HI phase the entanglement spectrum is expected to be
at least fourfold degenerate, reflecting the broken Z2 × Z2

symmetry. Figure 3 shows the DMRG data for ξα obtained
atU=t ¼ 5. While for L ¼ 128 the fourfold degeneracy can
be seen only deep inside of the HI phase, for L ¼ 512
almost all HI states exhibit this degeneracy. By contrast, in
the trivial MI and DW phases the lowest entanglement level
is always nondegenerate. Obviously higher entanglement
levels ξα > 8 are also fourfold degenerate (cf. Fig. S2 of
Ref. [24]).
We already stated that the HI phase is protected by the

inversion symmetry of the lattice. This symmetry can
explicitly be broken by adding to the Hamiltonian (1) an
appropriate perturbation [13],
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FIG. 2 (color online). Panel (a): Central charge c� of the EBHM
with U=t ¼ 5, indicating the MI-HI (HI-DW) transition point
with c ¼ 1 (c ¼ 1=2). The inset shows a finite-size scaling of the
MI-HI transition points from the energy difference with APBCs.
Panel (b): Extrapolated data for the charge gap Δc (open squares)
and neutral gap Δn (open circles) at U ¼ 5t. Vertical lines mark
the transition points estimated from c�. While Δn vanishes at both
MI-HI and HI-DW boundaries, the charge gap Δc closes at the
MI-HI transition only. Turning on an inversion-symmetry break-
ing perturbation [g=t ¼ 0.1, see Eq. (3)] Δc stays finite ∀ V=t
(filled squares). Panel (c): c� at U ¼ 0. Now the SF/MI-HI
transition point is hardly to detect.
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FIG. 3 (color online). Entanglement spectrum ξα of the EBHM
with U=t ¼ 5. If exciting the degeneracy of the entanglement
levels becomes more perfect as the system size increases (cf. data
for L ¼ 128 [panel (a)] with those for 512 [panel (b)]). A
perturbation (3) breaking the lattice inversion symmetry lifts
the degeneracy in the HI phase. This is demonstrated by panels
(c) and (d) giving ξα for PBCs in the primary HI regime for
g=t ¼ 0.1 and 0.2, respectively.
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δĤ ¼ g
X

j

½ðn̂j − ρÞb̂†j b̂jþ1 þ H:c:�: ð3Þ

As a consequence the MI-HI quantum phase transition
disappears [13] and the single-particle charge gap stays
finite; see the filled squares in Fig. 2(b) displaying Δc for
g=t ¼ 0.1. One also expects that this perturbation lifts
the degeneracy of the lowest entanglement level in the HI
phase. Indeed Fig. 3(c) illustrates that any finite g dissolves
the fourfold degeneracy in the HI phase, where the gap
between the lowest levels increases raising g [cf. Fig. 3(d)].
That is, the entanglement spectrum substantiates the
suspicion that the lattice inversion symmetry is necessary
for the nontrivial topological HI state to exist.
Since the EBHM (1) can be realized by ultracold bosonic

atoms loaded in optical lattices [29] it is highly desirable to
study dynamical correlation functions which are accessible
by experiments. For this purpose, the kinetic-energy
correlations of the effective spin-1 Heisenberg chain was
proposed to be a candidate detecting the HI phase and
calculated on a mean-field level of approximation [12].
Here we suggest the dynamical structure factor—which
can be directly measured by momentum-resolved Bragg
spectroscopy [30,31]—to be indicative of a SPT state. This
quantity is defined as

Sðk;ωÞ ¼
X

n

jhψnjn̂kjψ0ij2δðω − ωnÞ; ð4Þ

where jψ0i and jψni denote the ground state and nth
excited state, respectively. The corresponding excitation
energy is ωn ¼ En − E0. In the absence of the nearest-
neighbor repulsion V, Sðk;ωÞ was intensively studied by
means of perturbative and dynamical DMRG techniques
[20,32]. Taking V into account, in the MI, a gap opens at
k ¼ 0 and the spectral weight becomes concentrated in the
region k > π=2, around ω=U ≃ 1, just as for the standard

Bose-Hubbard model. This is exemplified for U ¼ 5t and
V ¼ t by Fig. 4(a). The maximum in Sðk;ωÞ follows a
cosine-dispersion which is flattened, however, near the
Brillouin zone boundary for k ≥ 3π=4. The situation
dramatically changes when we enter the HI phase by
increasing V=t, cf. Fig. 4(b) for V=t ¼ 3. Now the
dispersion of the maximum in Sðk;ωÞ bends back above
k ¼ π=2, acquiring a sinus shape with (small) excitation
gaps at both k ¼ 0 and k ¼ π. Also the spectral weight of
the dynamical charge structure factor is concentrated at
k ¼ π and finite but very small for ω ≪ U. We note that the
dispersion of the maximum in the HI phase is remindful of
those of the spin-1 Heisenberg chain. A dispersive signal
persists if we allow larger nb (see the results presented in
Ref. [24] for the EBHMwith nb ¼ 5). In the DW phase, the
maximum of Sðk;ωÞ is almost dispersionsless and located
at ω≳ 1.5U for U=t ¼ V=t ¼ 5 [see Fig. 4(c)]. The
intensity is notably more confined than for the MI.
Figure 4 demonstrates that the dispersion in the insulating
phases barely changes if the system size is increased.
In every sense, Sðk;ωÞ behaves very differently in the
MI, DW, and HI states and might therefore be used to
discriminate these insulating phases.
In summary, we studied—from an entanglement point of

view—the topologically nontrivial Haldane insulator,
appearing in the intermediate coupling regime of the
one-dimensional Bose-Hubbard model with on-site and
nearest-neighbor Coulomb interactions in the midst of Mott
insulator, density-wave, and superfluid phases. Using the
DMRG technique, the MI-HI (HI-DW) quantum phase
transition is determined with high precision from the
central charge c� that can be extracted from the von
Neumann entropy. We thereby approved the universality
class c ¼ 1 (c ¼ 1=2) predicted by field theory. We
furthermore established a characteristic fourfold degen-
eracy of the lowest entanglement level in the SPT Haldane
phase and demonstrated that any violation of the lattice

(a) (b) (c)

FIG. 4 (color online). Intensity plots of the dynamical structure factor Sðk;ωÞ in the MI (a), HI (b), and DW (c) phases. Data were
obtained by the dynamical DMRG technique for L ¼ 64 using a broadening η ¼ 0.5t. Crosses (circles) give the maximum value of
Sðk;ωÞ for L ¼ 64 (L ¼ 32 and η ¼ t) at fixed momenta k ¼ 2πj=L with j ¼ 1;…; L=2.
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inversion symmetry lifts this degeneracy. With the objective
to stimulate further experiments on ultracold bosonic atoms
in optical lattices we analyzed the dynamical charge
structure factor for the extended Bose-Hubbard model
and showed that this quantity can be used to distinguish
the Haldane insulator, exhibiting a gapped excitation
spectrum similar to the spin-1 Heisenberg-chain model,
from conventional Mott and density-wave states.
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