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Macroscopic objects floating in an ionized gas (plasma walls) accumulate electrons more efficiently than ions
because the influx of electrons outruns the influx of ions. The floating potential acquired by plasma walls is thus
negative with respect to the plasma potential. Until now plasma walls are typically treated as perfect absorbers
for electrons and ions, irrespective of the microphysics at the surface responsible for charge deposition and
extraction. This crude description, sufficient for present day technological plasmas, will run into problems in
solid-state based gas discharges where, with continuing miniaturization, the wall becomes an integral part of
the plasma device and the charge transfer across it has to be modelled more precisely. The purpose of this paper
is to review our work, where we questioned the perfect absorber model and initiated a microscopic description
of the charge transfer across plasma walls, put it into perspective, and indicate directions for future research.

1 Introduction

All low-temperature gas discharges are bound by macroscopic objects. In contrast to magnetically confined,
high-temperature plasmas they strongly interact with solids which either operate as electrodes, providing the
break-down voltage, or simply as floating walls, preventing the constituents of the plasma to disappear. The most
fundamental manifestation of the solid-plasma interaction is the plasma sheath adjacent to an unbiased, floating
wall. It is an intrinsic electron-depleted region which solely arises because the plasma is bound by a solid [1].

The sheath is the macroscopic indication of a microscopic charge transfer across the plasma wall. Electrons
are deposited in and extracted from the wall until a negative wall potential results which repels electrons and
attracts ions such that quasi-stationarity of the potential can be maintained. The microscopic understanding of
this process is rather rudimentary. Usually, it is assumed that all electrons and ions hitting the wall annihilate
instantly which is the same as to say that the wall is a perfect absorber and that at the wall the electron and ion
influx balance. Most of the modeling of gas discharges (see, for instance, Loffhagen and Sigeneger [2] for a recent
review) uses this boundary condition and leaves thus no room for the description of the charge transfer across
the plasma wall. At best the wall is characterized by an electron-ion recombination coefficient and secondary
electron emission coefficients for various impacting species.

Clearly, the perfect absorber model implicitly assumes that for the phenomena occurring in the discharge the
time and spatial scales of the charge transfer across the plasma wall are irrelevant and hence there is no need
to track them [1]. How electrons are trapped in or at the wall, what their binding energy and residence time
is, how and from what kind of electronic states they are released, and how the sheath potential merges with
the surface potential of the wall are beyond the scope of this crude modeling of the plasma wall. In various
novel bounded plasmas [3] it seems to be however rewarding to pay more attention to these questions. In dusty
plasmas [4–8], for instance, the total amount of charge soaked up by the dust particles affects of course the
overall characteristic of the discharge [9] and should thus be known as precisely as possible. Likewise it is
by now also well known [10–14] that the wall charge plays an active role in determining the spatio-temporal
structure of dielectric barrier discharges [15] and microplasmas [16, 17]. A detailed understanding of the charge
transfer across the plasma-dielectric interface promises therefore an improved control of this type of discharges.
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Finally and most fascinating, in solid-state based microdischarges [18, 19], the (biased) plasma wall becomes
with continuing miniaturization even an integral part of the discharge and thus needs to be explicitly modelled.

Inspired by Emeleus and Coulter [20] as well as Behnke and coworkers [10, 21] who attempted to describe
the dynamics of the wall charge and its coupling to the bulk plasma with phenomenological rate equations,
characterized by sticking coefficients, residence times, and recombination and emission coefficients, we initiated
in the framework of the TRR24 an effort to describe the plasma wall beyond the perfect absorber model [22–24].
With an eye on grain charging in dusty plasmas and the wall charge in dielectric barrier discharges we calculated
– as a first step – for various uncharged metallic [23] and dielectric [25–27] surfaces electron sticking coefficients
and desorption times, determined the distribution of the wall charge across the interface between a plasma and
a floating dielectric surface [28], and investigated how electrons are extracted from dielectric surfaces via de-
exciting metastable molecules [29, 30]. Below we discuss the status of our work, put it into perspective, and
indicate where it should go in the future.

2 Build-up of the wall charge: Deposition of electrons

In contrast to the assumptions of the perfect absorber model, an electron impinging on a solid surface is either
reflected, inelastically scattered, or temporarily deposited to the surface. Possible trapping states (or sites) and
hence residence times and penetration depths depend on its energy, the inelastic coupling to the elementary
excitations of the surface driving energy relaxation, and the work function (electron affinity) of the material.

The surface physics just described can be encoded in a Hamiltonian. For a planar surface, with a potential
which varies only perpendicularly to the surface, and using the eigenstates of this potential as a basis [23],

H =
∑
q

Eqc
†
qcq +

∑
s

Esd
†
sds +

∑
s,q,q′

〈q|V̂s|q′〉c†qcq′ , (1)

where the first term describes the motion of the impinging electron in the surface potential, the second term
denotes the motion of the elementary excitations of the wall responsible for energy relaxation, and the last term
is the coupling of these excitations to the electron; q and s label the respective states and excitations.

The basis in which the Hamiltonian is written down, the elementary excitations causing energy relaxation,
and the coupling V̂s depend on the surface. Below we show results for dielectric surfaces where the elementary
excitations are acoustic phonons and the surface potential is a truncated image potential. This model is applicable
to a dielectric surface with negative electron affinity, that is, a dielectric where the bottom of the conduction band
is above the potential just outside the surface, MgO and LiF being two important examples. For such a surface
image states are stable and can thus host the approaching electron. In order to investigate the dependence of the
trapping scenario on material parameters, for instance, the Debye frequency and the dielectric function, and to
show trends we applied the model however also to dielectric materials with positive electron affinity [25–27].

In analogy to physisorption of neutral particles [31] we take the time evolution of the occupancy of bound
surface states labelled by n as a measure for temporary trapping. It satisfies a rate equation [25–27],

dnn(t)

dt
=

∑
n′

[Wnn′nn′(t)−Wn′nnn(t)]−
∑
k

Wknnn(t) +
∑
k

τtWnkjk , (2)

where the transition probabilities W··· have to be calculated from (1), jk denotes the stationary flux corresponding
to a single electron in the unbound surface state k, and τt = 2L/vz is the traveling time through the surface region
where energy relaxation occurs. For relaxation happening in external surface states, the length L can be absorbed
in the transition probabilities and drops out in the limit L → ∞ which can be meaningfully taken in this case.
If however energy relaxation takes place inside the wall, as in dielectrics with positive electron affinity, L is the
penetration depth and has to be obtained from experiments or theoretically calculated [24].

A quantity characterizing trapping of an electron with wave number k is the prompt sticking coefficient [31],

sprompt
e,k = τt

∑
n

Wnk , (3)

which is the probability to make during one round trip in the relevant surface region a transition from an unbound
to a bound state. In case the surface potential supports only one bound state this is enough and the rate equation (2)
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is not needed. If however the surface potential supports many bound states and the elementary excitations causing
energy relaxation are not energetic enough to connect the lowest bound state directly with unbound states, the
characterization of trapping has to be based on the rate equation. From its slowly varying part [31],

dnslow(t)

dt
=

∑
k

skin
e,kjk(t)−

1

τe
nslow(t) , (4)

the residence or desorption time τe and the kinetic sticking coefficient skin
e,k, which is the probability for trapping

and relaxation of an electron with wave number k in the manifold of bound surface states, can then be extracted.
We applied the approach just outlined to various uncharged dielectric surfaces assuming electron physisorption

to occur in the image potential, which is, as pointed out, rigorously true only for dielectrics with negative electron
affinity [25–27]. Electron energy relaxation at these surfaces is driven by acoustic phonons whose Debye energy is
very often not only too small to connect the lowest bound state to the unbound states but also too small to connect
the two lowest bound states. The physisorption kinetics of electrons at dielectric surfaces involves therefore
multiphonon transitions [25–27]. Only the initial trapping of electrons in the upper bound states, characterized
by the prompt sticking coefficient, occurs via one-phonon processes. Multiphonon processes contribute very
little to it. Hence, initial trapping is rather insensitive to the surface temperature. Relaxation after initial trapping
depends on the strength of transitions from the upper bound states to the lowest bound state. If the lowest two
bound states are linked by a one-phonon transition, a trapped electron relaxes for all surface temperatures, if a
multiphonon process is required, the electron relaxes only for low temperatures whereas for room temperature
and higher relaxation is inhibited leading to a relaxation bottleneck. The dominant desorption channel depends
also on the depth of the potential. For a shallow potential desorption occurs directly from the lowest bound state
to the continuum. For deeper potentials desorption proceeds via the upper bound states. Desorption occurs then
via a cascade in systems without and as a one-way process in systems with relaxation bottleneck [27].

Fig. 1 Inverse of the electron residence time as a function of
the surface temperature Ts for an electron thermalized with a
LiF surface (left panel) and k−averaged prompt and kinetic
sticking coefficients (right panel) for an electron approaching
a LiF surface at Ts = 300K with a kinetic energy which is
Boltzmann distributed over the unbound surface states with
average energy kBTe. The perfect absorber model implies
se = 1 and τ−1

e = 0.

Fig. 2 Energetic situation in front of a dielectric surface
with χ < 0 and −eφw > 0. The red line is the graded
interface potential on which the model of an electron sur-
face layer (ESL) is based. Also shown is the electron
energy distribution function in the plasma, the effective
wall where the flux balance condition is enforced, and
the image states where the electrons comprising the wall
charge get trapped.

Electron physisorption at an uncharged dielectric surface is thus an intriguing phenomenon. For the plasma
context most important is that se � 1 and τ−1

e �= 0 [25–27], implying that an initially uncharged dielectric
surface with a negative electron affinity is not a perfect absorber for electrons. Representative results for LiF are
shown in Fig. 1. Since the wall charge does not affect the relative line up of the potential just outside the dielectric
and the bottom of the conduction band (potential just inside the dielectric), as mistakenly assumed in [24] but
corrected in [28], this conclusion also holds for a charged dielectric wall with negative electron affinity. The

c© 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim www.cpp-journal.org
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sticking coefficient is only larger and thus closer to the value implied by the perfect absorber model when the
electron affinity is positive and the impinging electron enters the wall, that is, for materials with positive electron
affinity. In such a case the residence time should be also much longer, as implied by the perfect absorber model.

After the initial charge-up is completed, the wall carries a quasi-stationary negative charge, that is, in the
notation of electron physisorption, a quasi-stationary electron adsorbate. We will now discuss how the spatial
profile of the electron adsorbate normal to the crystallographic interface can be determined. The basic idea [28]
is to use a graded interface potential [32] to interpolate between the sheath and the wall potential and to distribute
the surplus electrons making up the wall charge in this potential under the assumption that at quasi-stationarity
they are thermalized with the wall [33]. For the present purpose it suffices to describe qualitatively the simplest
implementation of this idea – the crude electron surface layer (see Fig. 2 and [28]).

The adsorbed electrons form an interface-specific electron distribution – the electron surface layer – across the
planar interface at z = 0. Their spatial profile n(z) can be calculated as follows [28]. (i) First, an effective wall
has to be defined. Its position, z0 > 0, marks the point where the sheath merges with the electron surface layer.
For z > z0 electrons are repelled back into the plasma, whereas for z < z0 electrons are pushed towards the
surface. Hence, a flux balance is taken at z0. Moreover, the field strength at z0 due to the positive sheath charge is
related to the total number of surplus electrons per unit area N . In order to calculate z0 and the field strength at z0
a sheath model and a flux balance condition are required. The results presented in Fig. 3 and discussed below, for
instance, are – for simplicity – based on a collisionless sheath with a perfect absorber condition at z0. (ii) Second,
equations for the electron distribution n(z) and the potential φ(z) in the electron surface layer, that is, for z < z0
have to be set-up. For that purpose, density functional theory can be employed [33]. The central equation is then
given by minimizing the grand canonical potential of the interacting surplus electrons in the external potential
provided by the surface and the sheath. In the local density approximation, it reads [28]

−e(φim(z) + φsurf(z) + φC(z)) + μh(n(z), Ts)− μ = 0 , (5)

where μh(n(z), Ts) is the chemical potential of a homogeneous electron gas with density n(z) at the surface
temperature Ts, φim(z) is the graded image potential, φsurf(z) is the graded surface potential accounting for the
electron affinity of the surface, that is, the offset of the potential just outside the dielectric and the bottom of the
conduction band (see Fig. 2), and φC(z) is the Coulomb potential satisfying the Poisson equation,

d

dz

(
ε(z)

d

dz
φC(z)

)
= 4πen(z) , (6)

with ε(z) the graded dielectric constant interpolating between the dielectric constants of the plasma and the
dielectric. The total potential φ(z) = φim(z) + φsurf(z) + φC(z) and μ is the chemical potential of the surplus
electrons. (iii) Third, Eq. (5) has to be solved iteratively (until μ is stationary) subject to the boundary condition
described in (i) and the additional constraint

∫ zs
z0

dz n(z) = N which guarantees charge neutrality between the
electron surface layer and the plasma sheath. In the crude electron surface layer zs < 0 is a cut-off which has to
be chosen large enough in order not to affect the numerical results. In the refined electron surface layer it is the
point where the electron surface layer merges with the intrinsic region of the dielectric [28].

In Fig. 3 we show results for two floating dielectric walls in contact with a helium discharge with plasma
density n0 = 107cm−3 and electron temperature kBTe = 2eV . The numerical calculations were performed as
described in Ref. [28]. Depending on the electron affinity χ the distribution of electrons at the surface assumes
two distinct forms: For LiF (χ < 0), the conduction band minimum lies above the potential just outside and the
surplus electrons are bound in the image potential in front of the wall forming an external, very narrow surface
charge which can be regarded as the quasi two-dimensional electron gas anticipated by Emeleus and Coulter [20].
Its spatial profile does not change much with surface temperature and surface density of electrons (depending on
the plasma parameters). For Al2O3 (χ > 0), the conduction band minimum lies below the potential just outside
and the surplus electrons accumulate inside the dielectric forming an internal wall charge. Increasing the surface
density of electrons (through the plasma parameters) makes the electron distribution more concentrated at the
interface (steeple-like) while at higher surface temperature it is more extended. Also shown in Fig. 3 are the
potential, the electron density, and the ion density in the sheath. The latter two are discontinuous at z0 because
inside the electron surface layer electron and ion fluxes are neglected. For further discussion see Ref. [28].
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a) b)

Fig. 3 Density of plasma-supplied surplus electrons trapped in the ESL, electron and ion density in the plasma sheath, and
electric potential for a LiF (panel a) and an Al2O3 surface (panel b) in contact with a helium discharge with plasma parameters
n0 = 107cm−3 and kBTe = 2eV . The crystallographic interface is at z = 0. Note, the different scales of the two panels.
The deep penetration of the Al2O3 wall charge is due to the neglect of defect states and other collision centers.

The model of an electron surface layer is an attempt to describe that part of the plasma boundary which leaks
into the plasma wall. It provides a way to determine the distribution and binding energy of the wall charge as well
as the spatial profile of the potential inside the wall. We described the electron surface layer for a floating wall
but it can be generalized to a biased wall as well, that is, an electrode by simply supplementing it by an external
bias.

3 Tapping the charge of the wall: Extraction of electrons

We now turn our attention to the extraction of electrons from the wall. The most important process extracting
electrons from the wall is the wall recombination of positive ions. But high energy electrons and metastable
molecules or radicals carrying internal energy are also very efficient in releasing electrons from the wall.

In the following we will focus on secondary electron emission from dielectric walls due to metastable ni-
trogen molecules. This process, which has been shown to stabilize the diffusive mode of dielectric barrier
discharges [12], plays an important role in an in-house experimental effort to obtain, via surface and volume
diagnostics, a complete characterization of such discharges, comprising volume as well as surface processes [14].

An important parameter for the modeling of dielectric barrier discharges is the secondary electron emission
coefficient, characterizing the efficiency with which electrons can be extracted from the dielectric coverage of the
electrode. It depends on the surface material, the projectile, and the particular collision process. For N2(

3Σ+
u ) two

de-excitation channels [34] can provide an additional electron for the discharge. The molecule either de-excites
via an Auger process corresponding to the reaction (possible at metallic surfaces [29])

N2(
3Σ+

u ) + e�k → N2(
1Σ+

g ) + e�q , (7)

with e�k and e�q denoting a surface electron and a free electron, respectively, or via a resonant electron capture
leading to a negatively charged shape resonance, N−

2 (2Πg), which subsequently decays corresponding to

N2(
3Σ+

u ) + e�k → N−
2 (2Πg)→ N2(

1Σ+
g ) + e�q . (8)

For most dielectrics the Auger process is energetically suppressed, diamond being an important exception (see
Fig. 4a). The combination of charge capture and subsequent decay of the negative ion (surface-induced as well as
natural via auto-detachment) is thus the dominant de-excitation channel for N2(

3Σ+
u ) at dielectric surfaces [30].

The reaction chain (8) consists of two sequential resonant tunneling processes (see Fig. 4a): resonant charge
transfer (RCT) and auto-detachment (AuD). Each step can be modelled by an Anderson-Newns Hamiltonian [35],
which is an effective model, stripped of some of the microscopic details and characterized instead by a small
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number of material parameters which can be easily obtained. Models of this type are well suited for describing
elementary processes at plasma walls where the lack of surface diagnostics prevents a more refined modeling.
The Hamiltonian appropriate for (8) reads

H(t) =
∑
�k

ε�k
c†�k c�k + εm(t) c†m cm +

∑
�k

(
V�k (t) c

†
�k
cm + V ∗

�k
(t) c†m c�k

)
, (9)

where, for the first (second) step of the reaction chain �k denotes electronic states within the solid’s valence band
(free electron states) and m labels the lower (upper) ionization level of the negative shape resonance N−

2 (2Πg).
Using Keldysh Green functions [36] it is possible to calculate from (9) the rate for resonant electron capture Γ0(t)
and the rate for surface-induced decay Γsurf(t). For details see Ref. [30].

a) b)

Fig. 4 a) Energy scheme showing for a N2(
3Σ+

u ) molecule scattering off a diamond and Al2O3 surface direct (red dashed)
and indirect (red solid) Auger de-excitation (AD) and resonant charge transfer (RCT) with subsequent auto-detachment (AuD)
of the N−

2 (2Πg) shape resonance (dashed blue). b) Illustration of the energetic situation for electron deposition and extraction
at a dielectric plasma wall with positive electron affinity. The electrons deposited in the conduction band of the solid are
qualitatively shown as well as the holes in the valence band arising from the extraction of electrons by positive ions and/or
metastables/negative ions. The inversion of the occupancy of the states in the dielectric may persist only temporarily until it
is eliminated by charge relaxation and transport or radiative processes.

The ionization levels εm(t) and the tunnel matrix element V�k(t) depend on time via the molecule’s position
relative to the surface. Assuming, for simplicity, normal incidence, and the molecule to start moving at t0 =

−∞ and to hit the surface at t = 0, the trajectory of the molecule’s center of mass is �R(t) = zR(t)�ez =
(v0 |t|+ z1)�ez , where z1 is the turning point in the surface potential of the molecule and v0 is the molecule’s
velocity. Explicit expressions for the matrix elements appearing in (9) can be found in Ref. [30]. In Fig. 4a

we show the relevant ionization levels of N2(
3Σ+

u ) and N−
2 (2Πg) for t0 = −∞. Note, due to intra-molecular

Coulomb correlations the ionization levels of N−
2 (2Πg) are shifted with respect to the ones of N2(

3Σ+
u ) . In

accordance to the fact that N−
2 (2Πg) is an unstable shape resonance, the upper ionization level of N−

2 (2Πg)
is above the vacuum level. The rate for the natural decay Γnat can be deduced from the life time assuming a
Breit-Wigner-type line shape for the auto-ionization process [30].

Relating the occupancies of the lower (m = 0) and the upper ionization level (m = 1) of N−
2 (2Πg) to the

fractions of metastable molecules n∗(t), negative ions n−(t), and ground state molecules ng(t), reaction (8) can
be coded into a system of ordinary differential equations whose solution gives [30],

n∗(t) = e−
∫ t
t0

dt1 Γ0(t1) , n−(t) = −
∫ t

t0

dt1
dn∗(t1)
dt1

e−
∫ t
t1

dt2 Γ1(t2) , (10)

where Γ1 = Γsurf+Γnat is the total decay rate containing the surface-induced and the natural decay. The fraction
of ground state molecules follows from ng(t) = 1 − n∗(t) − n−(t). Writing the total decay rate Γ1 in terms of
an energy spectral function [30] we also obtain the probability of emitting an electron,

n(t) =

∫ ∞

0

dε∞�q

∫ t

t0

dt1 	1(ε
∞
�q , t1)n−(t1) , (11)
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which defines the secondary electron emission coefficient, γe = n(∞), as well as the energy spectrum of the
emitted electron, dn(∞)/dε∞�q . Here ε∞�q denotes the energy of the electron far away from the surface.

Using the above formalism we investigated for various dielectric surfaces the de-excitation of N2(
3Σ+

u ) via
reaction (8) [30]. Figure 5 shows results for a SiO2 surface. The spectrum of the emitted electron is shown in
Fig. 5a. The kinetic energy of the molecule is 50meV and only the natural decay was taken into account because
it dominates the surface-induced decay by one order of magnitude [30]. The cut-off of the spectrum at low energy
arises from the trapping of the emitted electron in the image potential when its perpendicular kinetic energy is
too small. The secondary electron emission coefficient γe is shown in Fig. 5b as a function of the molecule’s
kinetic energy εkin. The inset, finally, depicts for a molecular kinetic energy of 50meV the time evolution of
the fraction of metastables n∗ and ground state molecules ng . These data demonstrate clearly that due to the fast
decay of N−

2 (2Πg) the decrease of n∗(t) leads to an almost instantaneous increase of ng(t) by the same amount
and thus to a very efficient release of an electron.

a) b)

Fig. 5 a) Spectrum of the electron emitted from a SiO2 surface upon impact of a metastable N2(
3Σ+

u ) molecule with
perpendicular molecular axis and three different kinetic energies. b) Secondary electron emission coefficient γe due to de-
exciting N2(

3Σ+
u ) at an SiO2 surface as a function of the molecule’s kinetic energy and the two orientations of the molecular

axis. The inset shows the time evolution (t < 0 incoming and t > 0 outgoing branch of the trajectory) of the fractions of the
metastables n∗ and ground state molecules ng .

It is interesting to note that the de-excitation of N2(
3Σ+

u ) extracts an electron from the valence band whereas
the wall charge would reside in the conduction band of SiO2 (see Fig. 4b for an illustration). The charge transfer
due to the build-up of the wall charge, on the one hand, and the de-excitation of N2(

3Σ+
u ), on the other, thus leads

to an inversion of the band occupancies. The time and length scales on which it persists until it is eliminated by
radiative processes or electron relaxation and transport are not yet explored. Support for this microscopic picture
comes however from measurements of the wall charge in dielectric barrier discharges which indicate the presence
of positive wall charges [14]. From our perspective, these are holes in the dielectric’s valence band.

4 Concluding remarks

In a still on-going effort we question the perfect absorber model for plasma walls and develop concepts and
tools for a microscopic description of the interaction of electrons and other species with plasma walls. We are
particularly interested in how electrons are deposited in and extracted from floating plasma walls and how they
are distributed across the plasma-wall interface once a quasi-stationary floating potential is established.

So far, we mostly considered uncharged metallic and dielectric surfaces but our results already indicate that
floating dielectric plasma walls with negative electron affinity cannot be described as perfect absorbers because
se � 1, irrespective of the charge of the surface. Our results also indicate that in this case the wall charge
forms a quasi two-dimensional electron film in front of the surface. The total charge collected by a plasma
wall most probably does not depend on whether it is trapped in front or inside the wall; but knowing where
the charge resides may be useful for developing diagnostics of the wall charge. The time scale, in contrast,
on which the quasi-stationary wall charge develops should depend on the way it is trapped. A time-resolved
study of, for instance, charging and de-charging of grains in a plasma (or an electro-static trap) could thus reveal
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further insights into the microphysics of wall charges. As yet unexplored is the electronic inversion temporarily
existing in a floating dielectric wall because the electron influx deposits electrons in the conduction band (or in
unoccupied surface states, depending on the electron affinity), and the influx of ions and/or metastables extracts
electrons from the valence band. We focused on charge extraction due to metastable nitrogen but the inversion
also arises due to wall recombination of positive ions. It is thus generic for a floating dielectric wall and should be
investigated in detail, particularly in connection with discharges gliding on floating dielectric surfaces [14] where
the build-up and decay of the inversion could affect, for instance, the spatio-temporal evolution of the discharge.

Fundamental to any interface is charge transfer. This mantra also holds for plasma walls although the rich
microphysics associated with it reveals itself only after a judicious design of the wall and the discharge. The
progress in manufacturing solid-state based microdischarges is therefore particularly encouraging. We used the
electron surface layer to describe a floating plasma wall. Supplemented by an external bias, it can be however
also used for a microscopic description of biased walls, for instance, the plasma bipolar junction transistor [18],
where the plasma wall is an integral part of the device.
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