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Abstract. Atoms, molecules or excitonic quasiparticles, for which excitations
are induced by external radiation fields and energy is dissipated through radiative
decay, are examples of driven open quantum systems. We explain the use of
commutator-free exponential time propagators for the numerical solution of the
associated Schrödinger or master equations with a time-dependent Hamilton
operator. These time propagators are based on the Magnus series but avoid
the computation of commutators, which makes them suitable for the efficient
propagation of systems with a large number of degrees of freedom. We present an
optimized fourth-order propagator and demonstrate its efficiency in comparison
to the direct Runge–Kutta computation. As an illustrative example we consider
the parametrically driven dissipative Dicke model, for which we calculate the
periodic steady state and the optical emission spectrum.
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1. Introduction

The outcome of many experimental measurements is well described by linear response theory
for situations close to thermal equilibrium. Other experiments, predominantly those dealing
with small quantum systems in strong external fields, require a full non-equilibrium description.
One example is cavity quantum electrodynamics [1] and generally finite quantum systems in
radiation fields. While the interaction of a single atom or an atomic ensemble with the quantized
cavity field is weak, transitions between atomic levels can be induced with strong, classical
laser fields. Through cavity losses and spontaneous emission the energy input from the external
pumping dissipates. Atoms in a cavity are open quantum systems far from equilibrium.

Such situations are described either by the Schrödinger equation

i∂t |ψ(t)〉 = H(t)|ψ(t)〉 (1)

with a time-dependent Hamilton operator H(t) if we neglect dissipation or more generally by a
master equation

∂tρ(t)= L(t)ρ(t) (2)

with a time-dependent Liouville operator L(t), e.g. one of the Lindblad type which includes
dissipation in the Markovian approximation [2]. In addition to single-time expectation values,
which provide the basic information from time propagation of the wave function |ψ(t)〉 or
density matrix ρ(t), one is interested in many-time correlation functions that yield optical
spectra or information about the coherence or statistical properties of the emitted light [3, 4].

Since explicit solutions of linear differential equations with variable coefficients do not
exist apart from simple situations, the above equations fall into the domain of numerical time
propagation. The topic of this paper is the application of commutator-free propagators based on
the Magnus series [5]. The Magnus series arises in the context of differential equations on Lie
groups, where it allows, among many other things, for the systematic construction of high-order
approximations to the propagator [6]. Commutator-free exponential time propagators (CFETs)
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avoid the use of commutators that appear in the Magnus series. They provide an efficient and
accurate algorithm for numerical time propagation [7], which we discussed for the Schrödinger
equation in [8]. Here, we concentrate instead on master equations for open quantum systems.
Although the present application lies outside of the principal Lie group setting, we feel that
the numerical results presented here are promising enough to warrant closer inspection. The
application to the parametrically driven dissipative Dicke model in section 5 gives an indication
of the potential of this approach in non-trivial situations.

The paper is organized as follows. In sections 2 and 3, we discuss the basic numerical
problem and its principal solution through the Magnus series. The CFETs are introduced as
a more practical solution in section 4 and an optimized fourth-order propagator is given in
section 4.2. After a demonstration of their usage with the example of a spin in a magnetic field
in section 4.3, we turn to a discussion of the parametrically driven dissipative Dicke model in
section 5, before we summarize in section 6.

2. The numerical problem

To describe the basic numerical problem we consider the Schrödinger equation (1). The
standard approach obtains the wave function |ψ(t)〉 through time stepping. The middle-point
approximation

|ψ(t + δt)〉 ≈ exp [−i δt H(t + δt/2)]|ψ(t)〉 (3)

allows for propagation of |ψ(t)〉 over a short time interval [t, t + δt]. Repeated application
of equation (3) gives |ψ(t + T )〉 starting from |ψ(t)〉 with N = T/δt time steps. As detailed
later, straightforward expansion of the exponential shows that the error of one time step with
equation (3) is ∝ (δt)3, such that the total error ∝ N (δt)3 = T (δt)2 for propagation time T scales
as (δt)2. Conversely, the achieved accuracy scales as (δt)−2, which we can write symbolically
as error ∝ effort−2.

As a second-order method the middle-point approximation is not efficient and requires
small δt even for low accuracy demands. If we ask for a better scheme we should note that
the approximation (3) has two independent sources of error. The genuine error in the situation
of a time-dependent Hamilton operator arises from the replacement of H(t) by the constant
H(t + δt/2), and depends mainly on the rate of change of H(t). In addition, the numerical
computation of an operator or matrix exponential exp[A] involves an error determined by
the spread of eigenvalues of A. In equation (3) it is roughly proportional to δt and the norm
‖ H(t + δt/2)‖.

Often the rate of change of H(t), e.g. set by an external field frequency, is smaller than the
largest eigenvalues of the Hamilton operator corresponding to highly excited states. Then the
total error is dominated by the computation of the exponential in equation (3). Very small time
steps δt and correspondingly large effort are required even if H(t) changes slowly.

This observation explains why the use of general algorithms for the solution of ordinary
differential equations (ODEs), e.g. the standard fourth-order Runge–Kutta (RK4) procedure [9],
cannot be recommended unreservedly for the Schrödinger equation. The problem of such
(explicit) ODE solvers is that they provide only a poor approximation of the exponential in
equation (3) and are inefficient already for constant H .
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Figure 1. Left panel (a): fourth-order Taylor (green curve) and Chebyshev
approximation (red curve) of Re exp(t)= cos(t) on the interval [−2, 2]. The
dashed lines give the error of both approximations. The maximal error is
7.8 × 10−2 for the Taylor approximation, which loses accuracy at the boundaries
of the interval, versus 4.7 × 10−3 for the Chebyshev approximation. Right panel
(b): error ε (see equation (4)) for the calculation of exp[−iHt] with the diagonal
10 × 10 matrix with eigenvalues Hnn = n and t = π/5. We compare the fourth-
order Runge–Kutta procedure (RK4) with the use of the fourth-order Chebyshev
approximation in a time-stepping scheme (Cheb4) and with a single propagation
step using N terms of the Taylor series (Tay) or of the Chebyshev approximation
(Cheb). In time stepping the error decays as a power (here ∝ N−1/4) of the effort,
while full computation of the exponential in a single step achieves much quicker
error reduction.

For example, the RK4 procedure approximates the exponential by the five terms exp[A] ≈

1 + A + A2/2 + A3/6 + A4/24 of the Taylor series of ex . The problem is that the Taylor series is
not a good approximation unless |x | is very small. This effect is shown in panel (a) of figure 1,
where it is compared to an approximation using Chebyshev polynomials (of the first kind) [10].
In this example, the five-term Chebyshev approximation is 16 times more accurate than the
five-term Taylor series. For the fourth-order approximation error ∝ effort−4, this implies that the
efficiency is increased by a factor of 161/4

= 2.
In panel (b) of figure 1 we compare the error–effort relation of the RK4 procedure to that of

the Chebyshev approximation for the calculation of exp[−iδt H ], where H is a diagonal matrix
with entries Hnn = n as for a harmonic oscillator. Here, and also in later examples (figures 2
and 3), we give the error between an exact and a numerical matrix Ae/n as the maximal difference
of matrix elements

ε = max
i j

|Ae
i j − An

i j |. (4)

The Chebyshev approximation is clearly superior already for a small δt . It becomes even better
with increasing eigenvalue spread or time step |δt |.

This reasoning motivates the replacement of ODE solvers by techniques which take
advantage of the linearity of the Schrödinger or master equations. The calculation of a
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matrix exponential is better accomplished with specialized algorithms, such as split-operator
methods [11], or the Krylov [12, 13] or Chebyshev technique [14] in the case of large sparse
matrices. They allow for efficient propagation with time-independent Hamilton operators.
Equipped with such algorithms it remains to improve on the genuine error ∝ (δt)2 involved
in equation (3) when turning to time-dependent Hamilton operators.

3. Magnus propagators

The importance of an accurate evaluation of exponentials for the Schrödinger equation is related
to the fact that the exponential maps the Hermitian Hamilton operator H onto the unitary
propagator exp[−it H ]. Many differential equations involve a Lie algebra (here: of Hermitian
Hamiltonians) and a Lie group (here: of unitary propagators) in this way. The idea behind
‘geometric numerical integration’ of ODEs [15] is that also an approximate propagator should
stay in the respective Lie group.

Let us consider general linear differential equations

ẋ(t)= A(t)x(t), (5)

where x(t) is a vector and the coefficient matrix A(t) is time dependent. The formal solution of
equation (5) is provided by the propagator U (t) that gives

x(t)= U (t)x(0) (6)

for all x(0).
For a scalar equation ẋ = a(t)x , the propagator is obtained through integration U (t)=

exp[
∫ t

0 a(τ ) dτ ]. For operators or matrices, [A(t1), A(t2)] 6= 0 is possible, such that this
expression does not generalize. We can still read this expression as an approximation

U (t)≈ exp

[∫ t

0
A(τ ) dτ

]
. (7)

For small t = δt , this is nothing else than the approximation (3), if the integral over τ
is approximated (also with error (δt)3) using the middle-point value A(δt/2). Although
equation (7) involves a finite, maybe large, error its exponential form guarantees that the
approximate propagator lies in the Lie group. The question is whether we can improve on the
(δt)3 scaling of the error and preserve the exponential form.

An affirmative answer is given by the Magnus series [5, 6], which gives

U (t)= exp

[∫ t

0
A(τ ) dτ +�2(t)+�3(t)+ · · ·

]
(8)

as an exponential of Lie algebra elements �n(t) and provides a systematic scheme for their
construction.

The first term in (8) is the term known from the scalar case. The non-commutativity of
A(t) is accounted for by correction terms �n(t), for n > 2. The term �n(t) is given by a time-
ordered integral of n-fold nested commutators of A(τi) and can be obtained through a recursive
calculation. The first two terms are

�2(t)=
1

2

∫ t

0
dτ1

∫ τ1

0
dτ2 [A(τ1), A(τ2)] (9)
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and

�3(t)=
1

6

∫ t

0
dτ1

∫ τ1

0
dτ2

∫ τ2

0
dτ3 [A(τ1), [A(τ2), A(τ3)]] + [[A(τ1), A(τ2)], A(τ3)]. (10)

Explicit expressions for higher-order terms become quickly unwieldy. Importantly, by building
terms from commutators of Lie algebra elements A(τi), every �n(t) stays in the Lie algebra.

The Magnus series solves two problems. On the one hand, it preserves the Lie group
structure of a differential equation. For the Schrödinger equation, where A(t)= −iH(t), the
propagator U (t) is unitary as the exponential of an anti-Hermitian matrix. Furthermore, unitarity
of U (t) is preserved for any truncation of the Magnus series. On the other hand, since the term
�n(t) involves an n-fold integration over time, its size scales as (δt)n. Working with a truncated
series including terms�n for n 6 N only, the error of the obtained approximate propagator itself
scales as (δt)N+1. We can thus improve systematically on the middle-point approximation (3)
by including more terms from the Magnus series.

Unfortunately, the Magnus series does not solve the practical problem of finding an
efficient numerical time propagation algorithm. Computation of the nested commutators and
multiple integrals is difficult to implement and consumes computational resources. Fortunately,
there is a simpler and more convenient way.

4. Commutator-free exponential time propagators (CFETs)

The use of CFETs has been discussed in [7, 8, 16]. They are, basically, a reformulation of the
Magnus series that avoids integrals and commutators and gives the propagator as a product of
exponentials of simple linear combinations of A(t).

The simplest CFET is the middle-point approximation (3) itself. A fourth-order CFET,
where the error scales as (δt)4, was introduced in [7, 16]. It gives the approximate propagator
as the product of two exponentials

UCFET(δt)= exp
[
δt

(
g1 A(1) + g2 A(2)

)]
exp

[
δt

(
g2 A(1) + g1 A(2)

)]
, (11)

which involve a linear combination of A(t) specified by the coefficients

g1 =
3 − 2

√
3

12
, g2 =

3 + 2
√

3

12
, (12)

and uses only the values

A(1) = A[x1δt], A(2) = A[x2δt] (13)

of A(t) evaluated at two points in [0, δt] given by

x1 =
1

2
−

√
3

6
, x2 =

1

2
+

√
3

6
. (14)

This expression is the simplest non-trivial CFET. A better, optimized, fourth-order CFET
is presented below in equation (21). Higher-order CFETs can be constructed, and the freedom
in the choice of coefficients can be exploited for their optimization, i.e. the minimization of
the error. The construction of CFETs is rooted in the theory of abstract free Lie algebras that
underlies the Magnus series. Its description is beyond the scope of this paper; see [7] and our [8]
for details. Here, we proceed in the opposite way and give a direct check of the validity of
equation (11) that avoids most of the language of free Lie algebras.
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4.1. Direct validation of the fourth-order CFET

The principal idea is to combine the two exponentials in equation (11) with the
Baker–Campbell–Hausdorff (BCH) formula exp[X ] exp[Y ] = exp[X + Y + [X, Y ]/2 + · · ·] and
compare the resulting expression with the original Magnus series. Let us begin with the Taylor
series

A(t)= A1 + A2t + A3t2 + A4t3 + O(t4) (15)

of A(t), in the vicinity of t = 0. For the fourth-order CFET, only terms A1, . . . , A4 have to be
considered.

We insert the Taylor series in the Magnus series (8) and keep the first three terms to �4(t).
The terms�n(t) for n > 5 give contributions of the order of (δt)5 and higher. A simple counting
of indices shows that only the seven terms A1, A2, A3, A4, [A1, A2], [A1, A3], [A1, [A1, A2]] can
contribute to fourth order. The Magnus series thus gives the propagator

U (δt)= exp
[
δt A1 +

(δt)2

2
A2 + (δt)3

(
1

3
A3 −

1

12
[A1, A2]

)
+(δt)4

(
1

4
A4 −

1

12
[A1, A3]

)
+ O

(
(δt)5

) ]
. (16)

Note that the commutator [A1, [A1,A2]] does not contribute. This expression is the exact
reference for comparison.

It is easy to see that the middle-point approximation (3) is correct to second order (δt)2: the
terms δt A1 + ((δt)2/2)A2 are reproduced exactly, but the commutator [A1, A2] in the third-order
term is missing.

For the fourth-order CFET from equation (11), it is

A(k) = A1 + δt xk A2 + (δt xk)
2 A3 + (δt xk)

3 A4 + O((δt)4) (17)

for k = 1, 2, which inserted gives

UCFET(δt)= exp
[
δt(g1 + g2)A1 + (δt)2(g1x1 + g2x2)A2 + (δt)3(g1x2

1 + g2x2
2)A3

+(δt)4(g1x3
1 + g2x3

2)A4 + O((δt)5)
]

× exp
[
δt(g2 + g1)A1 + (δt)2(g2x1 + g1x2)A2

+(δt)3(g2x2
1 + g1x2

2)A3 + (δt)4(g2x3
1 + g1x3

2)A4 + O((δt)5)
]
.

We now use the BCH formula

eX eY
= exp

[
X + Y +

1

2
[X, Y ] +

1

12
[X, [X, Y ]] −

1

12
[Y, [X, Y ]] + · · ·

]
(18)

to combine the two exponentials. Only the three commutators shown in equation (18) need to
be evaluated, the following commutators in the BCH formula contribute terms of the order of
(δt)5 or higher. We then obtain the expression

UCFET(δt)= exp
[
δtξ1 A1 + (δt)2ξ2 A2 + (δt)3 (ξ3 A3 +χ1[A1, A2])

+(δt)4 (ξ4 A4 +χ2[A1, A3] +χ3[A1, [A1, A2]])+ O((δt)5)
]
, (19)

which allows for a direct comparison with the Magnus series in equation (16). We immediately
recognize the seven terms and commutators from there.
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Comparison of the coefficients ξi , which we evaluated with the BCH formula, to the
prefactors in (16) gives the conditions

ξ1 = 2g1 + 2g2 = 1, (20a)

ξ2 = (g1 + g2)(x1 + x2)=
1

2
, (20b)

ξ3 = (g1 + g2)(x
2
1 + x2

2)=
1

3
, (20c)

ξ4 = (g1 + g2)(x
3
1 + x3

2)=
1

4
, (20d)

χ1 =
1

2
(g1 + g2) ((g2x1 + g1x2)− (g1x1 + g2x2))= −

1

12
, (20e)

χ2 =
1

2
(g1 + g2)

(
(g2x2

1 + g1x2
2)− (g1x2

1 + g2x2
2)

)
= −

1

12
, (20 f )

χ3 =
1

12
(g1 + g2)

2 ((g2x1 + g1x2)− (g2x1 + g1x2))= 0. (20g)

To complete our check we insert x1, x2 from equation (14) and g1, g2 from (12) and find that
all the seven conditions are satisfied. Note that condition (20g), and also (20d) and (20f), is
redundant.

For the construction of a CFET, this process has to be reversed. We start from an ansatz with
a product of exponentials, derive the relevant conditions for a CFET of the required order, and
solve the resulting polynomial equations for possible coefficient values. Several adjustments of
the direct calculation done here simplify bookkeeping, and reveal underlying structures which
reduce the number of conditions. Still, the construction of higher-order CFETs is involved and
not entirely free of brute force computations. See [8] to get an impression, where CFETs up to
order 8 are presented. The usage of a given CFET, however, is plain and simple.

4.2. Optimized fourth-order CFET

For the application to dissipative systems, we recommend here the use of an optimized fourth-
order CFET, which is equation (43) in our [8]. Extending the simpler expression (11) it gives
the approximate propagator as the product of three exponentials

U opt
CFET(δt)= exp

[
δt

(
g1 A(1) + g2 A(2) + g3 A(3)

)]
× exp

[
δt

(
g4 A(1) + g5 A(2) + g4 A(3)

)]
(21)

× exp
[
δt

(
g3 A(1) + g2 A(2) + g1 A(3)

)]
,

where

A(1) = A[x1δt], A(2) = A[x2δt], A(3) = A[x3δt] (22)

with

x1 =
1

2
−

√
3

20
, x2 =

1

2
, x3 =

1

2
+

√
3

20
(23)
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and

g1 =
37

240
−

10

87

√
5

3
, g2 = −

1

30
, g3 =

37

240
+

10

87

√
5

3
,

g4 = −
11

360
, g5 =

23

45
. (24)

The error of this CFET scales again as (δt)5, but the prefactor in front of the error term
is considerably smaller than for the CFET (11). The reduction outweighs the increase of effort
using three instead of two exponentials.

In contrast to the original Magnus series, the use of the CFET (21) is compellingly easy.
Only linear combinations of A(t) evaluated at three different points in the interval [0, δt] need
to be formed. All commutators and integrations have been removed from the expression. Of
course, we assume the existence of an algorithm for the computation of matrix exponentials.

Let us stress the advantage of easy usage with the even simpler formulation that is
obtained for an A(t)= B + f (t)C (it is easily generalized to include more terms). In this case
equation (21) can be written as

UCFET(δt)= exp [δt1 (B + f1C)] exp [δt2 (B + f2C)] exp [δt1 (B + f3C)] , (25)

with the time steps

δt1 =
11

40
δt, δt2 =

9

20
δt, (26)

and the coefficients f1, f2, f3 from f1

f2

f3

 =

h1 h2 h3

h4 h5 h4

h3 h2 h1

  f (x1δt)
f (x2δt)
f (x3δt)

 , (27)

using

h1 =
37

66
−

400

957

√
5

3
, h2 = −

4

33
, h3 =

37

66
+

400

957

√
5

3
,

h4 = −
11

162
, h5 =

92

81
. (28)

Through the CFET the full propagation with a time-dependent term f (t)C is replaced
(approximately) by piecewise propagation with a constant term fiC . The choice of the
coefficients f1, f2, f3 according to equation (27) guarantees that the error of this approximation
scales as (δt)5. This is the signature of geometric integration [15]: figuratively speaking, instead
of moving along a curve in the Lie group we move repeatedly along short straight lines, the
direction of which is given by the linear combinations in equation (21) or (25).

Note that the time steps δt1, δt2 are positive such that propagation proceeds in the forward
direction. This is important for dissipative systems where a negative δti would push eigenvalues
of L(t) into the right half complex plane, which leads to exponentially growing terms and
corresponding numerical instabilities. For this reason we restrict ourselves to fourth-order
CFETs here.
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Figure 2. Error ε between exact and numerical density matrices ρe/n(t) (see
equation (4)) versus the effort NH (the number of matrix–vector multiplications
with H ) for1= V = ω = 1.0 and j = 1/2 (left panel (a)) or j = 10 (right panel
(b)). The black curve gives the results using CFETs with a Chebyshev evaluation
of the exponential, and the red curve using the RK4 procedure. Curves are shown
for propagation time t = 10 and 100. The gray dashed lines indicate the reduction
of the RK4 effort by a factor of 1/2 or 1/4 achieved by the CFETs.

4.3. Exemplary application of the optimized fourth-order CFET

Let us apply the fourth-order CFET (21) to a simple example and compare with the RK4
procedure which, as we claimed, should be less efficient because it does not properly compute
exponentials. We have to stress that the efficiency of CFETs depends on a good algorithm for the
computation of matrix exponentials. Otherwise, when the additional computational overhead
involved exceeds the saving achieved with a large time step δt , the simple Runge–Kutta
procedure is more efficient.

Good algorithms for the symmetric case (A†
= ±A, e.g. for a Hermitian Hamiltonian) are

the Chebyshev, Krylov and split-operator techniques mentioned before. For the unsymmetric
case ([A, A†] 6= 0) encountered for dissipative systems, all techniques meet problems which
are only partially solved. After suitable modifications of the standard procedure the Chebyshev
technique behaves most favorably. The exploration of this point is left to a future publication;
here we take the virtues of the Chebyshev technique for granted.

4.3.1. The first example: spin in a magnetic field. As an example of a non-dissipative system,
consider a spin (length j) in a rotating magnetic field, with the Hamilton operator

H(t)= 21Jz + 2 V cos 2ωt Jx + 2 V sin 2ωt Jy. (29)

The time evolution of the wave function can be determined exactly after transformation with
exp[iωt Jz] to the rotating frame (see below).

In figure 2 we plot the error–effort relation for the optimized CFET (21) and the RK4
procedure for a typical set of parameters (the behavior for other parameters is identical).
The error ε is determined as in equation (4). For the effort NH we count the number of
evaluations of matrix–vector multiplications with the Hamilton operator, which is generally the
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most time-consuming step. The matrix exponentials needed for the CFET are calculated with
the Chebyshev technique to machine precision.

We see that the RK4 procedure requires less effort for low accuracy only, but the use of
the CFET becomes quickly advantageous as the spin length or propagation time increases. For
j = 10 and t = 100 in panel (b), the CFET is more efficient for error goals less than 1%, with
an efficiency gain of a factor of 2–4.

4.3.2. The second example: a driven dissipative two-level system. We keep the spin in the
rotating magnetic field as an example and include dissipation. With dissipation, its time
evolution is described by a master equation (2) for the spin density matrix ρ(t).

In the Lindblad formalism, the Liouville operator L(t)= LH(t)+LD is the sum of two or
more terms with different meaning [2]. The first term

LH(t)ρ = −i[H(t), ρ] (30)

contains the Hamilton operator H(t) and will be time dependent. The second and further terms
have the form

D[A]ρ = 2AρA†
− A† Aρ− ρA† A. (31)

They introduce eigenvalues of L(t) with a finite (negative) real part and thus describe
dissipation. Within the Lindblad formalism the form of D[A] guarantees that the structural
properties of the density matrix—hermiticity, normalization, positive semi-definiteness—are
strictly preserved. Note that the numerical time propagation scheme does not depend on the
precise form of L(t), as long as the master equation remains linear and local in time.

For the driven spin, dissipation is included through the Lindblad term

D[J−]ρ = 2J−ρ J+ − J+ J−ρ− ρ J+ J−, (32)

and the full Liouville operator is

L= L[H ] + γD[J−] (33)

with the dissipation rate γ > 0.
For j = 1/2, the exact solution of this problem is possible with a transformation ρ̃(t)=

exp[iωt Jz]ρ(t) exp[−iωt Jz] to the rotating frame, which gives a time-independent Hamilton
operator H̃ = 2(1−ω)Jz + 2 V Jx . Note that the transformation leaves Jz invariant.

The stationary state in the rotating frame, corresponding to the eigenvalue zero of the
transformed Liouville operator L̃ for γ > 0, is

ρ̃∞ =
1

4(1−ω)2 + γ 2 + 2 V 2

(
V 2

−(2(1−ω)+ iγ )V
−(2(1−ω)− iγ )V 4(1−ω)2 + γ 2 + V 2

)
. (34)

In particular, 〈Jz(t)〉 converges for t → ∞, with constant value

〈Jz〉∞ =
V 2

4(1−ω)2 + γ 2 + 2 V 2
−

1

2
. (35)

In panel (a) of figure 3, we plot 〈Jz(t)〉 starting from the initial state with 〈Jz(0)〉 = +1/2.
Transient oscillations decay as a result of finite dissipation γ > 0. The value of 〈Jz(t)〉 in the
quasi-equilibrium state depends on the field frequency ω, which we increase slowly during time
propagation. 〈Jz(t)〉 follows closely the value 〈Jz〉∞ from equation (35), with a short delay, and
we identify the resonance at ω(t)=1.
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Figure 3. Left panel (a): 〈Jz(t)〉 of the driven dissipative spin j = 1/2 from
equation (33), with 1= V = ω = 1.0 and γ = 0.01. Shown is the envelope
function, suppressing the fast spin oscillations with frequency 1. The magnetic
field frequency ω(t) grows linearly from 0 to 2 during propagation (green dashed
curve). The red curve gives the steady-state result from equation (35) to the
respective frequency ω(t). Right panel (b): similar to figure 2, the error ε versus
effort NH for 1= V = ω = 1.0, j = 1/2 and finite dissipation γ = 0.01.

At resonance ω =1, we obtain simple expressions for the remaining three eigenvectors of
L̃. The non-zero eigenvalues are λ1 = −γ , λ2 = −(3γ + ξ)/2, and λ3 = −(3γ − ξ)/2, with the
corresponding eigenvectors

ρ1 =

(
0 1
1 0

)
, (36)

ρ2 =

(
1 −i(γ − ξ)/(4V )

i(γ − ξ)/(4V ) −1

)
, (37)

ρ3 =

(
1 −i(γ + ξ)/(4V )

i(γ + ξ)/(4V ) −1

)
. (38)

We have introduced the abbreviation ξ =
√
γ 2 − 16 V 2.

Starting from the initial state with 〈Jz(0)〉 =
1
2 , we obtain the time evolution of ρ̃(t) from

the decomposition

ρ(0)=

(
1 0
0 0

)
= ρ∞ +

V 2 + γ 2

2(2V 2 + γ 2)
(ρ2 + ρ3)+

γ 3 + 5γ V 2

2ξ(2 V 2 + γ 2)
(ρ2 − ρ3) (39)

of the density matrix. In the underdamped case γ < 4 V , we have

〈Jz(t)〉 =
−γ 2

2(γ 2 + 2 V 2)
+

1

2V 2 + γ 2

(
(V 2 + γ 2) cos ω̃t − (γ 3 + 5γ V 2)

sin ω̃t

2ω̃

)
e−(3/2)γ t , (40)

where we write ω̃ = (1/2)
√

16 V 2 − γ 2 for the frequency of the transient contribution. These
expressions allow for a comparison with numerical results.

For the numerical solution of this problem, we do not transform the problem but keep the
time dependence of H(t) explicitly. In panel (b) of figure 3 we plot the error–effort relation
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as in figure 2. The relation between the CFET and the RK4 procedure is similar to the non-
dissipative case, and we recognize the factor 1/2 of error reduction for j = 1/2. The advantage
of the CFET is, however, not quite as distinct as for the dissipation-free case in figure 2(a).

5. The parametrically driven dissipative Dicke model

The previous examples serve as a benchmark for the CFET approach. We can now demonstrate
its usefulness for a less academic case, the parametrically driven dissipative Dicke model.
Optical properties of the Rabi case j = 1/2, corresponding to a single qubit, have been explored
in [17], and quantum phase transitions in the parametrically driven Dicke model without
dissipation are studied in [18].

The Hamilton operator of the Dicke model [19],

H(t)=1Jz +�a†a + λ(t)(a + a†)Jx , (41)

describes an ensemble of two-level atoms (transition energy 1) as a pseudo-spin of length
j , which couples to the cavity field (frequency �). We assume a time-dependent interaction
constant

λ(t)= λ0 + δλ cosωpt, (42)

and consider dissipation only through cavity losses described by the term D[a] (see
equation (31)) but neglect spontaneous emission (e.g. described by D[J−]). The Liouville
operator is

L= LH(t)+ κD[a], (43)

with loss rate κ > 0. In contrast to the standard quantum optical treatment in rotating wave
approximation, it is not possible to eliminate the explicit time dependence of H(t) through a
transformation to the rotating frame.

Because the rotating wave approximation is not applicable, physical properties of the
parametrically driven dissipative Dicke model have to be extracted from time propagation of
the density matrix of the joint atom–photon system. The number of entries of the density
matrix, which grows as ∝ (2 j + 1)2, becomes large already for moderate pseudo-spin length
j . In addition, highly excited states contribute to the dynamics if j grows. Therefore, as we
discussed in section 2, the advantage of CFETs over general ODE solvers such as the RK4
procedure will be pronounced for this more complex example.

In figure 4 we compare the recommended CFET from equation (21) to the RK4 procedure
and the naive middle-point approximation (3). We see that already for j = 5 we can easily
reduce the numerical effort by a factor of eight if we use CFETs. The reduction is achieved
independently of the intended error ε. The middle-point approximation, which is only a second-
order scheme, is not able to compete even with the RK4 procedure. This clearly supports our
recommendation for the CFET (21), and extends the positive results from [8] to dissipative
systems. Note that the CFET (21) is better (by 50%) than the simpler CFET (11) although it
requires computation of three instead of two matrix exponentials.

Note again that the advantage of CFETs stems from the fact that the propagator is
approximated as a product of exponentials of the Hamilton or Liouville operator. We know that
this strategy is favorable for non-dissipative systems because it respects the unitary geometry
of the Schrödinger equation [6, 15], but apparently it works well also for density matrix
propagation in driven dissipative systems. Conversely, CFETs rely on good computation of
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Figure 4. Comparison of the recommended (equation (21)) and simpler
(equation (11)) CFET with the RK4 procedure and the middle-point
approximation (3) in application to the parametrically driven dissipative Dicke
model. The Dicke model, with parameters 1=�= 1, κ = 0.01, λ0 = 1, δλ=

0.5 and ωp = 2, is propagated over 30 modulation periods, i.e. for 06 t 6
30(2p/ωp). As in figure 2 we show the error ε versus the effort NH for
all propagation schemes. The error is determined from a comparison of the
numerical density matrix and the reference solution obtained in the limit NH →

∞. The CFETs are used in combination with a Chebyshev evaluation of the
matrix exponential. Left panel: for j = 1/2, the CFET (21) is four times more
efficient than the RK4 procedure. Right panel: for j = 5, the CFET (21) is eight
times more efficient than the RK4 procedure.

matrix exponentials. As mentioned at the beginning of section 4.3 we use the Chebyshev
technique here because it proved to be more efficient and reliable than a Krylov computation
for non-Hermitian matrices.

5.1. Steady-state resonances

In panel (a) of figure 5, we show the time evolution of the initial state ρ(0)= |ψ〉〈ψ |, where
|ψ〉 = | − j/2〉 ⊗ |vac〉 is the state with no atomic or field excitations. We plot the population
inversion

Iz(t)=
1

2
+

1

j
〈Jz(t)〉 (44)

for a linear variation of the modulation frequency ωp from 1.5 to 2.5. Transient oscillations are
observed for t . 500, before two resonances evolve at a time corresponding to ωp ≈ 2 ± 0.12.
Beyond the resonances, Iz(t) decays again to a small value with weak oscillations.

The energy level diagram in panel (b) of figure 5 explains the appearance of resonances in
panel (a) through transitions between the states of the Jaynes–Cummings ladder [20].

The eigenstates of the zero coupling Hamiltonian are the Jz, a†a eigenstates |m, n〉, with
m + j atomic excitations and n photons. For �=1 the states |m + k, n − k〉, for several integer
k, are degenerate with energy (m + n)�. At weak coupling λ0 ��,1, degenerate states are
split ∝ λ0 by the atom–field coupling. Counting energies relative to the energy of the lowest
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Figure 5. (a) Time dependence of Iz(t) in the parametrically driven dissipative
Dicke model for j = 5, with a slow linear change of the modulation frequency
ωp from 1.5 to 2.5. The parameters are �=1= 1, κ = 5 × 10−3, λ0 = 0.02 and
δλ/λ0 = 2.5 × 10−2. Shown is the envelope function of Iz(t) instead of the fast
oscillations with frequency 1. (b) The lowest energy levels of the Dicke model
at weak coupling and �=1. In the Rabi case j = 1/2 only two doubly excited
states with energies E2,± exist; for j > 1/2 an additional third state with energy
E2,0 appears. Transitions from the ground state change the number of excitations
by two, and follow the vertical arrows. The matrix element for the transition with
energy E2,0 vanishes in lowest order perturbation theory.

state | − j, 0〉, the energies of the two singly excited states (|− j + 1, 0〉 ± |− j, 1〉)/
√

2 are given
by E1,± =�±

√
2 jλ0.

A weak modulation of λ(t) introduces transitions between | − j, 0〉 and the doubly excited
states (vertical arrows in panel (b)). Note that the splitting of energy levels in the diagram is
determined by the co-rotating terms J−a†, J+a in the coupling term Jx(a + a†), which preserve
the number of excitations in the sense of the rotating wave approximation, but the transitions
arise from the counter-rotating terms J+a†, J−a and change the number of excitations by two.
In the Rabi case j = 1/2, the two doubly excited states (|1/2, 1〉 ± |−1/2, 2〉)/

√
2 have energy

E2,± = 2�±
√

2λ0. Resonances are expected at these energies [17].
In the Dicke case j > 1/2, the splitting of the three degenerate states | − j + 2, 0〉,

| − j + 1, 1〉, | − j, 2〉 has to be calculated. This gives the energies E2,± = 2�±
√

8 j − 2λ0 for
the odd/even parity combination, reproducing the j = 1/2 result. The third state with unshifted
energy E2,0 = 2� is a linear combination of | − j + 2, 0〉, | − j, 2〉 only. It does not couple to
| − j, 0〉 through the counter-rotating terms, and the transition to this state is forbidden to leading
order of perturbation theory. Therefore, we also expect only two resonances in the Dicke case.
For the parameters from figure 5, they occur at E2,± = 2 ± 0.02

√
38 ≈ 2 ± 0.1233.

To identify the resonances numerically we propagate the system with a fixed ωp until the
periodic steady state is reached. Then we calculate the quantities

Iz =

∫ t+2π/ωp

t
Iz(t

′) dt ′, Nb =

∫ t+2π/ωp

t
Nb(t

′) dt ′ (45)
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(red curve) and total emission Stot (dashed red curve) for the driven dissipative
Dicke model, as a function of the modulation frequency ωp with parameters
�=1= 1, κ = 5 × 10−3, λ0 = 0.02, δλ/λ0 = 2.5 × 10−2 as in figure 5. The
quantities are averaged over one modulation period 2π/ωp. (a) Results
for the Rabi case j = 1/2. (b) Results for j = 5. The gray dashed lines indicate
the resonances at ωp = E2,±.

averaged over one modulation period 2π/ωp. Here,

Nb(t)= 〈a†(t)a(t)〉 (46)

is the number of cavity bosons.
In figure 6 the quantities Iz, Nb are shown as a function of ωp. We recognize the two

resonances ωp ≈ E2,±, which are broadened due to the cavity losses ∝ κ . For the calculation,
we used the optimized fourth-order CFET (21) together with a Chebyshev computation of the
exponential.

5.2. Emission spectrum

To study the optical properties of this system we compute the cavity emission spectrum S(ω).
It is obtained as the Fourier transform

S(ω)=
1

π
Re

∫
∞

0
S(τ )e−iωtdτ (47)

of the correlation function

S(τ )=

∫ t+2π/ωp

t
〈a†(t ′ + τ)a(t ′)〉 dt ′, (48)

which we calculate with the quantum regression theorem [3] through time propagation of the
operator aρ(t) (for τ > 0). The correlation function involves the average over one modulation
period [t, t + 2π/ωp] for large t , i.e. in the periodic steady state.

We include in figure 6 the total emission

Stot =

∫
∞

0
S(ω) dω, (49)
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Figure 7. Emission spectrum S(ω) for the Rabi case j = 1/2, at (panel (b))
and close to (panels (c), (d)) the higher resonance ωp = E2,+. It is ωp =

E2,+ − 0.008� in panel (c) and ωp = E2,+ + 0.004� in panel (d). The remaining
parameters are the same as in figure 6. The energy level diagram in panel (a)
follows figure 5. The four transitions are marked by vertical arrows and indicated
by the corresponding numbers in the other panels. The transition energies are
given in equation (51). The spectrum from (b) is included in panels (c) and (d)
as the gray filled curve.

which is given by the integral over positive ω in accordance with the fact that emission of a
(real) photon can only decrease the energy. We note the normalization∫

∞

−∞

S(ω) dω = S(τ = 0)= Nb. (50)

We see that Stot ≈ Nb close to resonance, when emission is strong. Away from resonance
Stot drops below Nb, since Nb counts also bound photons that do not contribute to emission.
However, Stot remains finite as a consequence of the Markovian approximation used here for the
dissipative term [17].

The emission spectrum for the Rabi case j = 1/2 is shown in figures 7 and 8 and for the
Dicke case with j = 5 in figures 9 and 10. For weak coupling, i.e. for |λ(t)| � {1,�}, the
interpretation of the emission spectrum is again possible using the energy level diagram from
figure 5.

For ωp ≈ E2,+ in figure 7, the higher of the two doubly excited states is populated. Since
the operator a changes the number of excitations by one, an atom in this state can decay to the
lowest state only through the intermediate singly excited states. Four transitions corresponding
to the four vertical arrows in panel (a) can be identified in this situation. For the Rabi case
j = 1/2, they are in order of increasing energy

ω1 = E1,− =�− λ0 ≈ 0.98, ω2 = E2,+ − E1,+ =�+ λ0(
√

2 − 1)≈ 1.01,

ω3 = E1,+ =�+ λ0 ≈ 1.02, ω4 = E2,+ − E1,− =�+ λ0(
√

2 + 1)≈ 1.05.
(51)
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Figure 8. Emission spectrum S(ω) for the Rabi case j = 1/2, at (panel (b))
and close to (panels (c), (d)) the lower resonance ωp = E2,−. It is ωp = E2,− −

0.004� in panel (c) and ωp = E2,− + 0.008� in panel (d). The remaining
parameters are the same as in figure 6, and the notation follows the previous
figure 7.

The numerical values correspond to the parameters from figure 7, and the transitions are marked
correspondingly in panels (a) and (b).

In transitions 2 and 4 the doubly excited state decays. These transitions are shifted by
ωp − E2,+ away from resonance (transitions 2′, 4′ in panels (c) and (d)). In transitions 1 and 3
the singly excited states decay, and their energy does not depend on the modulation frequency.
Note that transition 4 (dashed arrow) is parity-forbidden in lowest order perturbation theory and
gives only a weak signal.

The opposite case ωp ≈ E2,− in figure 8 has an analogous interpretation that follows from
the energy diagram in panel (a). Now the lower of the doubly excited states is populated, and
the order of transitions is reversed, with transition 1 as the parity-forbidden transition.

For the Dicke case j > 1/2 in figures 9 and 10 we expect the same qualitative behavior as
for j = 1/2 since the additional state with energy E2,0 does not participate in the transitions. For
the higher resonance ωp ≈ E2,+ in figure 9, the situation corresponding to figure 7, the transitions
in order of increasing energy are

ω1 =�− λ0
√

2 j ≈ 0.94, ω2 =�+ λ0(
√

8 j − 2 −
√

2 j)≈ 1.06,

ω3 =�+ λ0
√

2 j ≈ 1.06, ω4 =�+ λ0(
√

8 j − 2 +
√

2 j)≈ 1.19.
(52)

The numerical values correspond to the parameters from figure 9.
As a difference to the Rabi case j = 1/2 we note that ω2 ≈ ω3, such that the two transitions

cannot be distinguished in panel (b) because of the finite linewidth acquired through cavity
losses. If we change ωp, transition 2 is shifted but transition 3 remains fixed. This allows for the
separate identification of both peaks in panels (c) and (d). In the same way we can understand
the opposite case ωp ≈ E2,− in figure 10, which is similar to figure 8.
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energies are given in equation (52). The weak signals of the parity-forbidden
transitions 4, 4′ are displayed with a magnification factor 20 in all panels.
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Figure 10. Emission spectrum S(ω) for j = 5, at (panel (b)) and close to (panels
(c), (d)) the lower resonance ωp = E2,−. It is ωp = E2,− − 0.04� in panel (c) and
ωp = E2,− + 0.04� in panel (d). The remaining parameters are the same as in
figure 6, and the notation follows the previous figures 7–9. The weak signals of
the parity-forbidden transitions 1, 1′ are displayed with a magnification factor 20
in all panels.
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Figure 11. Peaks in the emission spectrum S(ω) at stronger coupling, for the
Rabi case j = 1/2 at the higher resonance ωp = E2,+. Left panel: energies ωpeak

of the different peaks as a function of coupling λ0. The solid curves marked
1–4 correspond to the transitions in figure 7 at λ0 = 0.02 and the dashed curves
show the position of additional peaks emerging at stronger coupling. Because
the peaks in S(ω) have a finite width, curves in the panel can begin and end at
an isolated point. Right panel: the peak height S(ωpeak) of the five highlighted
curves in the left panel. The height of the parity-forbidden transition 4 (cf panel
(a) of figure 7) is close to zero for all λ0.

For stronger coupling, additional peaks appear in the emission spectrum. The peak position
and height are shown in figure 11 for the situation corresponding to figure 7. Note that we adjust
the modulation frequency ωp = E2,+ for different λ0 to remain close to the higher resonance. For
λ0 & 0.1 a fifth transition peak ‘(5)’ becomes visible, and the previous interpretation of S(ω)
via the Jaynes–Cummings ladder breaks down. At least such situations require numerical time
propagation because a simple perturbative interpretation is no longer possible.

6. Summary and outlook

Numerical time propagation allows for the theoretical description of experimentally relevant
non-equilibrium situations beyond the linear response regime. Such situations arise in particular
if small systems such as atoms or molecules are manipulated by strong radiation fields.
Important directions of research include the optical properties of ensembles showing collective
behavior, such as polariton or exciton condensates [21, 22]. A characteristic optical signature,
such as that of the spatial shape and energy distribution of the optical emission [23, 24] or the
coherence properties of the emitted light, can provide the proof of existence for a condensate.
A fundamental theory of optical properties of collective phases of (quasi-) particles with a finite
lifetime requires the description of the driven open quantum system that is realized, e.g., by the
excitonic condensate in a semiconductor [25]. Different but on the fundamental technical level
related questions arise in the field of non-equilibrium transport problems [26].

The increasing complexity of the physical situation under study coincides with an increase
of the computational effort, which underlines the need for powerful numerical algorithms.
We argued here in favor of CFETs as a convenient alternative to the original Magnus series.
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Shifting the focus of previous studies, where CFETs were shown to be well suited for the time
propagation of driven systems without dissipation, we applied here CFETs to open quantum
systems. Using the parametrically driven Dicke model as an illustrative example, we calculated
the optical emission spectrum with this technique.

Conceptually, CFETs are recipes for the reduction of the original problem—the solution
of the Schrödinger or master equations with a time-dependent Hamilton operator—to the
computation of matrix exponentials. Because they replace the naive approximation of the
time propagator by a single exponential per time step, as it is encoded in the second-order
middle-point approximation (3), with a more sophisticated combination of exponentials, higher-
order CFETs significantly reduce the numerical effort. The particular appeal of CFETs is
that they can be combined with any technique for the computation of matrix exponentials,
for example the powerful Krylov (Arnoldi) or Chebyshev techniques in the context of large
sparse matrix computations. CFETs do not compete with such techniques, but instead serve the
complementary purpose of achieving a favorable error–effort scaling also for equations with a
time-dependent H(t). Therefore, CFETs should be of interest to anyone currently using Krylov
(Arnoldi) or Chebyshev techniques in studies of driven quantum systems: it is straightforward
and simple enough to add the CFET computational scheme from equations (21) and (25) to an
existing program or implementation [27, 28].

In addition to the principal research directions mentioned above, many open problems arise
within the more restricted context of this work. A notorious problem is the efficient evaluation
of the matrix exponential for non-symmetric large sparse matrices, which is essentially a
problem of polynomial approximation in the complex plane without precise knowledge of the
approximation domain. One may also question the principal usage of CFETs for dissipative
systems, where dynamical semi-groups replace the Lie group setting. Modifications of CFETs
can be tailored to this situation and circumvent the negative time-step problem that occurs for
methods beyond the fourth-order CFETs to which we restricted our present considerations.

A more physical question concerns the use of the Lindblad formalism in the description of
optical emission. The Markovian approximation is not entirely satisfactory here, since it cannot
distinguish between energy increasing (‘virtual’) and energy decreasing (‘real’) transitions in
the emission process. For this reason, the total emission rate remains finite (of the order of the
cavity loss rate κ) even without external pumping although it should drop to zero. The use of
non-Markovian master equations [2, 17] might overcome these problems, which should also be
relevant if we ask for the coherence properties of the emitted light [3, 4]. Another possibility is
the combination of CFETs with polynomial techniques for the numerical representation of open
quantum systems [29–31].

We hope to be able to return to some of these issues soon, which we had to leave unresolved
here. Currently, we can conclude that CFETs are a promising contribution to numerical time
propagation of complex non-equilibrium quantum systems and warrant further exploration.
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