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The local spin fluctuation theory proposed by Hasegawa is extended to binary alloys with random 
transfer of the additive type. Spin fluctuations and alloy disorder are treated within an extended 
coherent potential approximation (ODCPA). The dc conductivity 4, including CPA vertex cor- 
rections, is derived via density-density susceptibility from the functional integral scheme. In the 
paramagnetic region model calculations are presented for the averaged local moment, o,  density 
of states, and the distribution function of spin fluctuations. 

Die lokale Spinfluktuationstheorie von Hasegawa wird fur biniire Legierungen mit stochastischem 
Transfer vom additiven Typ erweitert. Spinfluktuationeii und Legierungsunordnung werden in 
einer erweiterten NLherung des koharenten Potentials (ODCPA) behandelt. Die dc-Leitfiihigkeit 
G wird unter Beriicksichtigung von CPA-Vertexkorrekturen uber die Dichte-Dichte-Suszepti- 
bilitat aus dem funktionalen Schema abgeleitet. Modellrechnungen werden im paramagnetischen 
Bereich fur das gemittelte lokale Moment, sowie a, Zustandsdichte und Verteilungsfunktion der 
Spinschwankungen vorgebtellt. 

1. Introduction 

There is much current interest in the investigation of electric and magnetic properties 
of transition metals and transition metal alloys [l to 111. Their theoretical description 
within a band theory (for these substances the Fermi level lies in narrow d-bands) is 
based on the Hubbard model [la]. As is well known the Hartree-Fock (HF) approxi- 
mation of the model gives good results in the ground state but fails at finite temper- 
atures. To explain for instance the low Curie temperatures T, in spite of the large 
exchange splitting energies and the Curie Weiss behaviour of the susceptibility in 
ferromagnetic metals, as well as the existence of local moments above T,, it is in- 
dispensable to take into account low-energy excitations of the spin density. Moriya 
[9] has pointed out that the nature of these fluctuations can vary in a region between 
the local moment and the weakly ferromagnetic case. A powerful method to include 
the fluctuations theoretically is the functional integral technique developed by Even- 
son et al. [13]. It forms the foundation for the spin fluctuation theory proposed by 
Hubbard [l] and Hasegawa [3], using an approach from the local limit in real space. 
Their theory was also applied to antiferromagnetic [3] and paramagnetic [lo] transi- 
tion metals. The first steps in treating alloys were taken by Hasegawa [5] (diagonal 
disorder) and Kakehashi [S] (inclusion of multiplicative random hopping). 

I n  this paper we extend the spin fluctuation theory to alloys with additive off- 
diagonal randomness (ODR), which allows us to investigate the interlock of correla- 
tions and randomness. We proceed as follows. After a brief review of the functional 
integral method (Section 2), the determination of the k-dependent self-energy of an 
averaged system takes place within the ODCPA, using Hasegawa’s decoupling scheme 
in the CPA equations [5] (Section 3). Consistently with the treatment of the electron 
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correlation in Section 3 we calculate the dc conductivity a t  finite temperatures from 
the density-density susceptibility in Section 4. CPA vertex corrections due to ODR 
are included. Numerical results are presented and discussed in Section 5. 

2. Functional Integral Approach 

To describe the magnetic properties of a substitutionally disordered alloy, we start 
with the one-band Hubbard Hamiltonian 

H { v }  = I: E;c&, + I: ti;c&cj, + 2 qnitniC ( 1 )  

for an arbitrary configuration {v}; v and ,LA refer to the two kinds of atoms (A or B), 
which are (according to their concentrations x v )  randomly distributed on the sites i 
and j of a simple cubic lattice. E; and U; denote the atomic energy and the intra- 
atomic Coulomb repulsion, respectively. The random hopping energies t$$ are restrict- 
ed to nearest neighbours (n.n.). The operator c& (ciu) creates (destroys) a spin 0 electron 
in the Wannier state a t  site i and nio = c$cio. Using the decomposition nitniniJ..= 
= +[(nit + ni+)2 - (nit - n ~ + ) ~ ]  [14] and performing the Hubbard-Stratonovich 
transformation [I51 the generating functional Z for fermion Green functions can be 
expressed in the charge neutrality limit by a path integral over anticommuting 
(Grassmann) variables and space- and time-dependent fields as 

i U  zja i 
( i * j )  

[Ht}(z)] i ju  = E; + ~ : ( E i ( t ) )  - 02 tc(t) &j + t i j (1 - &,) (4) “ 1  2 

P 

( 
and the abbreviation Cr, + %c = J d t  2 (Ci,,(z) q&) + 7j&) c&)). Here ciu(z) (Eiu(z)) 

corresponds to the operator ciu(c$), z denotes the imaginary time, #l = 1/(kBT), k, is 
the Boltemann constant and T the absolute temperature. The random action (3) 
involves the linearized Hamiltonian H L ,  whose matrix elements (4) are explicitly 
spin dependent. H L  describes noninteracting electrons which are influenced in their 
motion by a kind of exchange field configuration [l]. The charge potentials u;(l) 
have been chosen to conserve the mean electron number nyi a t  v-sites independent of 
the &field fluctuation. Through Z{y)[O, 01 = = Tr e-flH{” the generating functional 
(2) is related to the partition function 2 in the limit of vanishing external sources q 
[IS]. I n  view of ( 4 )  it is convenient to introduce the Green function through 

0 i o  

(-a,~,, - [ ~ t } ( r ) ] i ~ )  B ~ ~ , [ G ~ } ( Z ,  ~ ’ ) l m j  = 6ij~,,,6(t - z’) . (5) 

In  an alternative way G can be derived from (2) by functional derivation with 
respect to q and 3. Performing the integration in (2) over the fermion fields, one obtains 

mu’ U a‘”’ 
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Treating the fields &(z) in the static approximation, we get from (6) for the partition 
function 

with 
Z { ~ I  = J DE ~--BvJ{~’[sI , (7) 

(8) ydv1 = x 2 6; - n?u;(Et) + J f ( E )  - Tr In (-G:’(E+)-l) dE , 

where Tr  means the trace in spin and lattice space ( N  sites), f ( E )  is the Fermi distri- 
bution function, p the chemical potential, and E+ = E + i0. Note that (7) involves 
the full N-centre problem. With regard to (7) the average of some electronic quantity 
K can be expressed as 

O0 Im 
i [Y 1 -* 76 

taking into account the equivalence of functionals and operators. Here (...)id, (...), 
and (...)” denote the thermodynamic, functional, and configurational averages, 
respectively. 

3. ODCPA Troatment of Spin Fluctuations 
The ODR in (1) is chosen to be of the form tAB = ( t A A  + tBB),  which implies 
t’.@ == tBB + t; + tf (cf. [17]). The random parameters are subject to the probability 
zstribut ion 

P(&Z, t;, 77;) = X* a(&; - & A ,  t; + f ( tBB  - t A A ) ,  u; - U”) + XB S(&2, t;,  u; - UB) , 
(10) 

where we have separated from H { v )  a periodic part associated with the pure B-crystal. 
This means (3 = J dE; dt; dU; P(&;, t;, q) ... According to (10) the matrix elements 
of GP’-’, which we need to calculate y, take the form 

and s(k) = e-ik(Rj-Ra). Here: we have introduced the propagator 3 and the k- 
dependent self-energy &(k, z )  corresponding to an averaged system. To keep the 
evaluation of (9) tractable we make the following approximations: (i) Z and d are 
determined within a single-site approximation, the ODCPA. (ii) I n  accordance with 
(i) we carry out the decomposition y{”[E] -+ C y$(&), that means (9) becomes a 

product of N identical integrals. (iii) We use Hasegawa’s [5] decoupling approximations 
( E 2 n ) v  x ( ( ~ 2 ) v ) n  and ( ( 2 n + 1 ) v  x ( ( E 2 ) v ) n  (t)+‘, which transform the system into an 
effective Ising model [8]. Thus, in view of (i) to (iii), (9) becomes 

x 
(j+i;n.n.) 

i 

(K’(E))C = X+’W:Kv(sqY) , 
8 =; 1 
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with 
w: = - 1 (1 + e7) (5)’ 

2 

and qy = r/w (cf. [S]). (...)” denotes the conditional average J’ dti q(&) ... a t  
v-sites, with respect to the local distribution function 

(17) q(&) = e-Pv:(CO LJ’ dEa e-Bvd@d]-I 

for the auxiliary fields. Using the Dyson equation for a, (8) becomes 
I m  q 2  

4 -w 7d 

m 

(18) 

where an irrelevant factor is dropped. This is the alloy-analogy picture: an iinpurity 
site i is embedded in an otherwise effective CPA medium. Note that in contrast to 
only diagonal disorder [5 ]  we have to compute the trace tr in the Bloch representation, 
because the perturbation ( V  - 2) is nonlocal in Wannier space. Tts matrix elements 
are given by 

 ti) = -- - n:z~:(t~) + I dh’ f ( E )  - tr In ( I  - $(V - Z)) , 

A20 = - 2220, 

corresponding to the full self-energy &(k, 2) = &,, + 2Z;,s(k) + L’2us(k)2. Expanding 
the logarithm and performing the trace in (18) we get 

x (@p(E+)  Pou(h’+) + 252V(E+) F*JE+) + SZV(E+) F2,(E+)) ; (21) 
where 

(I = 0, 1 ,  2 )  . (22) I1 
Flu - 2 ~ k u [ ~ ( k ) I ’  

N k  

The recursion formulas for the l2::’ are given in the Appendix. They show the coupling 
of the fluctuations in a cluster consisting of site i and all its n.n. The self-energy 
parts result from six coupled t-matrix equations 

C 2 v W ; t : u ( S q ~ )  = 0 ,  
vs 

(23) 

where the explicit expressions of tlo are also listcd in the Appendix. Taking into 
account (i) to (iii) the self-consistency equations (23) can be obtained from functional 
differentiation of the free energy with respect to the averaged propagator 3. In  the 
case of only diagonal disorder (23) reduces to (2.6) in [5 ] .  With the local Green function 

Gii(6) = FOG + J”&t.&(5) + 2FiU&(5) + J’LzL(5) (24) 
U 
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one gets, for the partial electron numbers a t  v-sites, 

(25) ( -1 W 

nIu(t) = J dE f ( E )  - Im C&(E, E+) . 
-w 76 a 

Thus, in view of (24) and (25)) the charge neutrality condition takes the form 

nz = C 4 a ( t )  
a 

and the chemical potential is fixed by the requirement 

(--) n = J dE  f (E)  - x ImFOu(E+). 
co 

co- z u  

To compute averages using (15)) it is therefore necessary first to solve (23), (26)) (27) 
together with (17) self-consistently for a given T. Then, employing (25) ,  the averaged 
magnetization m and the root-mean-square local moment mloc are given by 

Using general relations of the functional technique [13], which are also hold in the 
approximations (i) to (iii), we can calculate m and mloc in an alternative way, 

Thus it is possible to evaluate the self-consistent loop (23), (26) to (31) for the deter- 
mination of &,,. 

4. Calculation of the Temperature-Dependent DC Conductivity 

Our starting point is the density-density susceptibility 

of noninteracting electrons within a &field configuration. The second equality in (32) 
follows from functional differentiation of (6) with respect to the fermion sources. 
T, is Wick’s time ordering operator and the functional average is performed after 
setting the external sources equal to zero. By using the relation between a(0) and 
the current density-current density response function [18], as well as the continuity 
equation, one gets for the static electric conductivity 

ie2w a(0) = - Re lim lim __ x(q, CD) , 
UJ-toq4 q2 

where the Fourier transform of (32) reads 

(33) 

40’ 
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(om = 2mnT and on = (2% + 1) nT are the Matsubara frequencies). The averaged 
two-particle correlation function related to (32) obeys the integral equation 

To proceed we expand ~ ( y ,  w,) after analytical continuation, in view of (33)) 
to lowest nonvanishing order in q and o, extracting a pole structure. This allows US 
to solve (35)) even in the presence of ODR, if we make the approximations (i) to (iii) 
for the functional average (i.e. <...) ---f (...)?). For (34) we obtain (cf. [19]) 

with the prescription 

(37) 

for the calculation of the diffusion coefficient. The explicit expression of D, 

[Da(E+, E+) + Da(E-, E-) - 2Ua(E+, E-)] (38) 
1 

12 Im Foa(E+) D a m  = 

with 
1 

22)  = - s k u  (21) ska(z2) [ D k  ( tBBa(k) $. 3 (za(k, %) + za(k, Z 2 ) ) ) r  + N k  

(39) 

l I  

+ [02d21) f aZa(%) 8ka(%)l [Vk$(k)lp} 

was given in [IS], however, in (39) the 3's are renormalized due to spin fluctuations. 
So for the conductivity we get the final result 

where e,(E) = - 1 /n Im Foa(E+) denotes the density of states. I n  the case of vanishing 
Coulomb interaction (40) corresponds to the solution of the conductivity problem 
obtained in [20,21] .  It is easy to see that for c the limit T --+ 0 gives the HF result. 

5. Numerical Results and Discussion 

The next step is to present model calculations, illustrating the influence of ODR on 
the quantities calculated in Sections 3 and 4. I n  this paper we restrict ourselves mainly 
to the paramagnetic regime, calculations in the ferromagnetic phase are in prepara- 
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Fig. 1. dc conductivity o (in units of 2) a t  various re- 
duced temperatures T'= k B T / 2  WB and concentrations 
x A  for the parameter set P = (&A, EB, W A ,  WB, U A ,  
U B )  = (-0.5, -0.5, 0.5, 1, 1, 1) andn = l .a)  ovs. 
T' for (1) x A  = 0, (2) 0.3, (3) 0.5, (4) 1 whereas curve5 
denotes the case Z* = 0 using the approximation 
f ( E )  O ( - - E ) ;  b) o VS. x A  a t  T' = 0.0861 

tion. For simplicity we use the semielliptic model density 

(41) 
1 2 

eB(B) = 2 6(E - s(k) tBB) = - [I - (")21,,' O(WB - [El)  
k 76 W B  W B  

for the unperturbed B-band, which implies 

Thus, the k-summations in (22) and, what is important, in (39) can be performed 
analytically. Here W B  = 6tBB is the half-bandwidth, cB = 0, and vg denotes the 
maximum velocity in the B-band. 

Fig. l a  shows the temperature dependence of CT, scaled by 3 = e2(wg)2/(3n), for 
the half-filled band a t  various alloy concentrations. Depending on U v /  W v  (i.e. band 
splitting or not), CT tends to zero (infinity) in the limit 0. This is 
due to the fact that for T -+ 0 the theory gives the HF result, that means for the pure 
system there exists no scattering mechanism, implying a real 2. At high temperatures 
the difference between the cases x A  = 0 and x4 = 1 vanishes and o decreases with 
increasing temperature. This decay can be also observed in the region 0 < xv < 1. 
But, owing to the additional scattering mechanism and the vertex corrections by 
statistical correlations, CT is strongly reduced, a fact which is illustrated in Fig. 1 b a t  
fixed temperature. It should be noted that in contrast to [3] the system undergoes 
no sharp metal-insulator transition if the Fermi distribution is correctly taken into 
account (compare curves 1 and 5 ) .  

For better insight, in Fig. 2 ,o(E), the integrand of (40) and the distribution functions 
O(6) are given referring to curve 2 in Fig. 1. At low temperatures Cv(E) behaves 
differently a t  A- and B-sites (owing to V V / W ) .  While CB(@ exhibits only one broad 
maximum CA(E) has a double-maximum structure. With increasing temperature 
the two peaks merge into a single peak, a behaviour in agreement with the results 
obtained by Sakoh and Shimizu [22] for the pure system. But in contrast to their 
observation e (E)  splits off a t  higher temperatures (Fig. 2a). This is due to Hasegawa's 
decoupling scheme in the CPA equations, leading to an Ising-like system, where in 
accordance with (31) the length p' of the Ising spins increases with T (cf. Fig. 3). 
The contribution of several electronic states to CT is pictured in Fig. 2 b. 

-+ 1(0) if T 
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€- I- 
Fig. 2. Temperature variations of a) the density of states e(E),  b) the integrand of the conductivity 
formula (40), o(E);  the reduced distribution function Cv(!.(5) a t  c) A-sites and d) B-sites for the set 
P used in Fig. 1 with n = 1 and XA = 0.3 at (1) T' = 0.0215, (2) 0.0645, (3) 0.301 

I n  Fig. 3 the temperature variation of the local moment is shown. For n = 1 the 
ground state is antiferromagnetically ordered and the results are only of physical 
significance above the NBel temperature. First we should emphasize that, different 
from the situation for cr, the influence of ODR is important only a t  low temperatures. 
Taking into account the Fermi distribution which was neglected in [3, 101 we obtain 

T' - 
Fig. 3 

0 12005 0107 
T' - 

Fig.4 
Fig. 3. Temperature dependence of the local moment mlOc for the set P and n = 1 : (1) xA = 0, 
(2) 0.3, (3) 0.5, (4) 1; n = 0.5: (6) XA = 0.3, (7) 0.5; n = 0.2: (8) z* = 0.3. Employing f(E) x 
= O(-E) curve 5 is plotted in comparison to curve 1. Curve 9 shows ~(WVS. T' a t  n = 1 and 
XA = 0 

Fig. 4. Averaged magnetization m and local moment mloc vs. reduced temperature T' for a pure 
B-system using the unperturbed density of states (41). Parameters are n = 0.12 and UB/WB = 4 
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a decay of mloo in the high-temperature region. For comparison curve 5 has been 
calculated in the approximation f (E )  x O(p - E) .  If the ground state is paramagnetic 
we have mloc(T = 0 )  = 0 in the static approximation and an increase with rising 
temperature (i.e. the local moments are thermally induced). Similar results were found 
for paramagnetic transition metals by Evangelou et al. [lo]. 

In order to clarify the influence of the model density, in Fig. 4 the T-dependences of 
m and mloo are shown using the bell-shaped band (41), where the electron number and 
m( T = 0) correspond to Ni. We get the expected reduction of the Curie temperature, 
(T, = 460 K if WB = 2.38 eV) and the slight increases of mloc above TG. However, 
m( T) shows an apparent deviation from the Brillouin curve contrary to the case where 
a more realistic sharply peaked density of states is used (cf. [4]). 

A more elaborated evaluation of the ferromagnetic phase including ODR would be 
an interesting subject of further investigations. 
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